Socles of Buchsbaum modules, complexes and posets

نویسندگان

  • Isabella Novik
  • Ed Swartz
چکیده

The socle of a graded Buchsbaum module is studied and is related to its local cohomology modules. This algebraic result is then applied to face enumeration of Buchsbaum simplicial complexes and posets. In particular, new necessary conditions on face numbers and Betti numbers of such complexes and posets are established. These conditions are used to settle in the affirmative Kühnel’s conjecture for the maximum value of the Euler characteristic of a 2k-dimensional simplicial manifold on n vertices as well as Kalai’s conjecture providing a lower bound on the number of edges of a simplicial manifold in terms of its dimension, number of vertices, and the first Betti number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 7 Socles of Buchsbaum modules , complexes and posets

The socle of a graded Buchsbaum module is studied and is related to its local cohomology modules. This algebraic result is then applied to face enumeration of Buchsbaum simplicial complexes and posets. In particular, new necessary conditions on face numbers and Betti numbers of such complexes and posets are established. These conditions are used to settle in the affirmative Kühnel’s conjecture ...

متن کامل

Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor

In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.

متن کامل

Modules with Noetherian second spectrum

Let $R$ be a commutative ring and let $M$ be an $R$-module. In this article, we introduce the concept of the Zariski socles of submodules of $M$ and investigate their properties. Also we study modules with Noetherian second spectrum and obtain some related results.

متن کامل

A classification of the face numbers of Buchsbaum simplicial posets

The family of Buchsbaum simplicial posets generalizes the family of simplicial cell manifolds. The h′vector of a simplicial complex or simplicial poset encodes the combinatorial and topological data of its face numbers and the reduced Betti numbers of its geometric realization. Novik and Swartz showed that the h′-vector of a Buchsbaum simplicial poset satisfies certain simple inequalities. In t...

متن کامل

Enriched homology and cohomology modules of simiplicial complexes

For a simplicial complex on {1, 2, . . . , n} we define enriched homology and cohomology modules. They are graded modules over k[x1, . . . , xn] whose ranks are equal to the dimensions of the reduced homology and cohomology groups. We characterize Cohen-Macaulay, l-Cohen-Macaulay, Buchsbaum, and Gorenstein∗ complexes , and also orientable homology manifolds in terms of the enriched modules. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009