Stochastic consensus over noisy networks with Markovian and arbitrary switches

نویسندگان

  • Minyi Huang
  • Subhrakanti Dey
  • Girish N. Nair
  • Jonathan H. Manton
چکیده

This paper considers stochastic consensus problems over lossy wireless networks. We first propose a measurement model with a random link gain, additive noise, and Markovian lossy signal reception, which captures uncertain operational conditions of practical networks. For consensus seeking, we apply stochastic approximation and derive a Markovian mode dependent recursive algorithm. Mean square and almost sure (i.e., probability one) convergence analysis is developed via a state space decomposition approachwhen the coefficientmatrix in the algorithmsatisfies a zero rowand column sum condition. Subsequently, we consider a model with arbitrary random switching and a common stochastic Lyapunov function technique is used to prove convergence. Finally, our method is applied to models with heterogeneous quantizers and packet losses, and convergence results are proved. © 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed stochastic consensus of multi-agent systems with noisy and delayed measurements

Networked systems are often subject to environmental uncertainties and communication delays, which make timely and accurate information exchange among neighbours difficult or impossible. This study investigates the distributed consensus problem of dynamical networks of multi-agents in which each agent can only obtain noisy and delayed measurements of the states of its neighbours. The authors co...

متن کامل

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

On the effect of low-quality node observation on learning over incremental adaptive networks

In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....

متن کامل

Synchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control

In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2010