Fast Inversion of the Exponential Radon Transform by Using Fast Laplace Transforms
نویسندگان
چکیده
Abstract. The Fourier slice theorem used for the standard Radon transform generalizes to a Laplace counterpart when considering the exponential Radon transform. We show how to use this fact in combination with using algorithms for unequally spaced fast Laplace transforms to construct fast and accurate methods for computing, both the forward exponential Radon transform and the corresponding back-projection operator. Moreover, we show how to use this result for inverting data modeled by the exponential Radon transform, both in the case of complete and incomplete data measurements. For the case of incomplete data, we show how to formulate the reconstruction problem as a deconvolution problem that only uses standard FFT after some initial computations using Laplace transforms.
منابع مشابه
An Inversion Method for the Exponential Radon Transform Based on the Harmonic Analysis of the Euclidean Motion Group
This paper presents a new method for exponential Radon transform inversion based on the harmonic analysis of the Euclidean motion group of the plane. The proposed inversion method is based on the observation that the exponential Radon transform can be modified to obtain a new transform, defined as the modified exponential Radon transform, that can be expressed as a convolution on the Euclidean ...
متن کاملA New Exact Inversion Method for Exponential Radon Transform Using the Harmonic Analysis of the Euclidean Motion Group
This paper presents a new method for the exponential Radon transform inversion based on the harmonic analysis of the Euclidean motion group of the plane. The proposed inversion method is based on the observation that the exponential Radon transform can be modified to obtain a new transform, defined as the modified exponential Radon transform, that can be expressed as a convolution on the Euclid...
متن کاملNew fast algorithms of multidimensional Fourier and Radon discrete transforms
This paper describes a fast new n{D Discrete Radon Transform (DRT) and a fast exact inversion algorithm for it, without interpolating from polar to Cartesian coordinates or using the backprojection operator. New approach is based on the fast Nussbaumer's Polynomial Transform (NPT).
متن کاملPathologies cardiac discrimination using the Fast Fourir Transform (FFT) The short time Fourier transforms (STFT) and the Wigner distribution (WD)
This paper is concerned with a synthesis study of the fast Fourier transform (FFT), the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing the phonocardiogram signal (PCG) or heart cardiac sounds. The FFT (Fast Fourier Transform) can provide a basic understanding of the frequency contents of the heart sounds. The STFT is obtained by calculating the Fourier tran...
متن کاملFast numerical inversion of the attenuated Radon transform with full and partial measurements
We propose a numerical method to simulate and invert the two-dimensional attenuated Radon transform (AtRT) from full (360◦) or partial (180◦) measurements. The method is based on an extension of the fast slant stack algorithm developed for the Radon transform. We show that the algorithm offers robust and fast inversion of the AtRT for a wide class of synthetic sources and absorptions. The compl...
متن کامل