View-Based Clustering of Object Appearances Based on Independent Subspace Analysis
نویسندگان
چکیده
In 3D object detection and recognition, an object of interest is subject to changes in view as well as in illumination and shape. For image classification purpose, it is desirable to derive a representation in which intrinsic characteristics of the object are captured in a low dimensional space while effects due to artifacts are reduced. In this paper, we propose a method for view-based unsupervised learning of object appearances. First, view-subspaces are learned from a view-unlabeled data set of multi-view appearances, using independent subspace analysis (ISA). A learned viewsubspace provides a representation of appearances at that view, regardless of illumination effect. A measure, called view-subspace activity, is calculated thereby to provide a metric for view-based classification. View-based clustering is then performed by using maximum view-subspace activity (MVSA) criterion. This work is to the best of our knowledge the first devoted research on view-based clustering of images.
منابع مشابه
View subspaces for indexing and retrieval of 3D models
View-based indexing schemes for 3D object retrieval is gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classi...
متن کاملLow-rank Multi-view Clustering in Third-Order Tensor Space
The plenty information from multiple views data as well as the complementary information among different views are usually beneficial to various tasks, e.g., clustering, classification, de-noising. Multi-view subspace clustering is based on the fact that the multi-view data are generated from a latent subspace. To recover the underlying subspace structure, the success of the sparse and/or low-r...
متن کاملNonlinear k-subspaces based appearances clustering of objects under varying illumination conditions
Unsupervised clustering of image sets of 3D objects has been an active research field within vision community. It is a challenging task since the appearance variation of the same object under different illumination condition is often larger than the appearance variation of different object under the same illumination condition. Some previous methods perform the appearance clustering using k-sub...
متن کاملSystem Analysis and Identification: Objects, Relations and Clusters
The use of Abstract Relation Types (ART) in the analysis of system structure and system component clustering is the primary focus of this paper. Two basic system definitions are presented along with two, object-clustering definitions which were obtained from a literature search. The ART analysis approach is applied to classical N-Squared Charts and Design Structure Matrices (DSM), with specific...
متن کاملبازشناسی جلوههای هیجانی با استفاده از تحلیل تفکیک پذیری مبتنی بر خوشه بندی چهره
Improvement of Facial expression recognition is aim of proposed method. This is a new formulation to the linear discriminant analysis. In the new formulation within-class and between-class covariance matrix are estimated on the each cluster and in the test phase new samples are mapped to the subspace that is related to the cluster of them. At the first we addressed clustering analysis of faces ...
متن کامل