Computing permanents of complex diagonally dominant matrices and tensors

نویسنده

  • Alexander I. Barvinok
چکیده

We prove that for any λ > 1, fixed in advance, the permanent of an n × n complex matrix, where the absolute value of each diagonal entry is at least λ times bigger than the sum of the absolute values of all other entries in the same row, can be approximated within any relative error 0 < ǫ < 1 in quasi-polynomial nO(lnn−ln ǫ) time. We extend this result to multidimensional permanents of tensors and discuss its application to weighted counting of perfect matchings in hypergraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Schur complements of generalized doubly diagonally dominant matrices

As is known, the Schur complements of diagonally dominant matrices are diagonally dominant; the same is true of doubly diagonally dominant matrices. The purpose of this paper is to extend the results to the generalized doubly diagonally dominant matrices (a proper subset of H -matrices); that is, we show that the Schur complement of a generalized doubly diagonally dominant matrix is a generaliz...

متن کامل

Ela the Eigenvalue Distribution of Schur Complements of Nonstrictly Diagonally Dominant Matrices and General H−matrices∗

The paper studies the eigenvalue distribution of Schur complements of some special matrices, including nonstrictly diagonally dominant matrices and general H−matrices. Zhang, Xu, and Li [Theorem 4.1, The eigenvalue distribution on Schur complements of H-matrices. Linear Algebra Appl., 422:250–264, 2007] gave a condition for an n×n diagonally dominant matrix A to have |JR+(A)| eigenvalues with p...

متن کامل

p-Norm SDD tensors and eigenvalue localization

We present a new class of nonsingular tensors (p-norm strictly diagonally dominant tensors), which is a subclass of strongH-tensors. As applications of the results, we give a new eigenvalue inclusion set, which is tighter than those provided by Li et al. (Linear Multilinear Algebra 64:727-736, 2016) in some case. Based on this set, we give a checkable sufficient condition for the positive (semi...

متن کامل

Computing the log-determinant of symmetric, diagonally dominant matrices in near-linear time

We present new algorithms for computing the log-determinant of symmetric, diagonally dominant matrices. Existing algorithms run with cubic complexity with respect to the size of the matrix in the worst case. Our algorithm computes an approximation of the log-determinant in time near-linear with respect to the number of non-zero entries and with high probability. This algorithm builds upon the u...

متن کامل

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.04191  شماره 

صفحات  -

تاریخ انتشار 2018