The Adler-shiota-van Moerbeke Formula for the Bkp Hierarchy

نویسنده

  • JOHAN VAN DE LEUR
چکیده

We study the BKP hierarchy and prove the existence of an Adler– Shiota–van Moerbeke formula. This formula relates the action of the BW1+∞–algebra on tau–functions to the action of the “additional symmetries” on wave functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adler-Shiota-van Moerbeke formula

We give an alternative proof of the Adler-Shiota-van Moerbeke formula for the BKP hierarchy. The proof is based on a simple expression for the generator of additional symmetries and the Fay identity of the BKP hierarchy. PACS: 02.30.Ik Mathematics Subject Classification (2000): 35Q58, 37K10

متن کامل

THE W1+∞(gls)–SYMMETRIES OF THE S–COMPONENT KP HIERARCHY

Adler, Shiota and van Moerbeke obtained for the KP and Toda lattice hierarchies a formula which translates the action of the vertex operator on tau–functions to an action of a vertex operator of pseudo-differential operators on wave functions. This relates the additional symmetries of the KP and Toda lattice hierarchy to the W1+∞–, respectivelyW1+∞×W1+∞– algebra symmeties. In this paper we gene...

متن کامل

Additional Symmetries and String Equation of the Ckp Hierarchy

Since its introduction in 1980, the Kadomtsev-Petviashvili(KP) hierarchy [1, 2] is one of the most important research topics in the area of classical integrable systems. In particular, the study of its symmetries plays a central role in the development of this theory. In this context, additional symmetries, which correspond to a special kind of symmetries depending explicitly on the independent...

متن کامل

Q-deformed KP hierarchy: Its additional symmetries and infinitesimal Bäcklund transformations

We study the additional symmetries associated with the q-deformed Kadomtsev-Petviashvili (q-KP) hierarchy. After identifying the resolvent operator as the generator of the additional symmetries, the q-KP hierarchy can be consistently reduced to the so-called q-deformed constrained KP (q-cKP) hierarchy. We then show that the additional symmetries acting on the wave function can be viewed as infi...

متن کامل

Matrix Integrals and the Geometry of Spinors

Recently H Peng [11] showed that the symmetric matrix model and the statistics of the spectrum of symmetric matrix ensembles is governed by a strange reduction of the 2Toda lattice hierarchy [12]. Adler and van Moerbeke [4, 5] (see also [2]) show that this reduction leads to vectors of Pfaffian tau-functions. However these Pfaffian tau-functions do not satisfy the Toda lattice hierarchy, but ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994