SemEval-2016 Task 8: Meaning Representation Parsing
نویسنده
چکیده
In this report we summarize the results of the SemEval 2016 Task 8: Meaning Representation Parsing. Participants were asked to generate Abstract Meaning Representation (AMR) (Banarescu et al., 2013) graphs for a set of English sentences in the news and discussion forum domains. Eleven sites submitted valid systems. The availability of state-of-the-art baseline systems was a key factor in lowering the bar to entry; many submissions relied on CAMR (Wang et al., 2015b; Wang et al., 2015a) as a baseline system and added extensions to it to improve scores. The evaluation set was quite difficult to parse, particularly due to creative approaches to word representation in the web forum portion. The top scoring systems scored 0.62 F1 according to the Smatch (Cai and Knight, 2013) evaluation heuristic. We show some sample sentences along with a comparison of system parses and perform quantitative ablative studies.
منابع مشابه
M2L at SemEval-2016 Task 8: AMR Parsing with Neural Networks
This paper describes our contribution to the SemEval 2016 Workshop. We participated in the Shared Task 8 on Meaning Representation parsing using a transition-based approach, which builds upon the system of Wang et al. (2015a) and Wang et al. (2015b), with additions that utilize a Feedforward Neural Network classifier and an enriched feature set. We observed that exploiting Neural Networks in Ab...
متن کاملCLIP$@$UMD at SemEval-2016 Task 8: Parser for Abstract Meaning Representation using Learning to Search
In this paper we describe our approach to the Abstract Meaning Representation (AMR) parsing shared task as part of SemEval 2016. We develop a novel technique to parse English sentences into AMR using Learning to Search. We decompose the AMR parsing task into three subtasks that of predicting the concepts, the relations, and the root. Each of these subtasks are treated as a sequence of predictio...
متن کاملUofR at SemEval-2016 Task 8: Learning Synchronous Hyperedge Replacement Grammar for AMR Parsing
In this paper, we apply a synchronous-graphgrammar-based approach to SemEval-2016 Task 8, Meaning Representation Parsing. In particular, we learn Synchronous Hyperedge Replacement Grammar (SHRG) rules from aligned pairs of sentences and AMR graphs. Then we use Earley algorithm with cubepruning for AMR parsing given new sentences and the learned SHRG. Experiments on the evaluation dataset demons...
متن کاملThe Meaning Factory at SemEval-2016 Task 8: Producing AMRs with Boxer
We participated in the shared task on meaning representation parsing (Task 8 at SemEval2016) with the aim of investigating whether we could use Boxer, an existing open-domain semantic parser, for this task. However, the meaning representations produced by Boxer, Discourse Representation Structures, are considerably different from Abstract Meaning Representations, AMRs, the target meaning repres...
متن کاملICL-HD at SemEval-2016 Task 8: Meaning Representation Parsing - Augmenting AMR Parsing with a Preposition Semantic Role Labeling Neural Network
We describe our submission system to the SemEval-2016 Task 8 on Abstract Meaning Representation (AMR) Parsing. We attempt to improve AMR parsing by exploiting preposition semantic role labeling information retrieved from a multi-layer feed-forward neural network. Prepositional semantics is included as features into the transition-based AMR parsing system CAMR (Wang, Xue, and S. Pradhan 2015a). ...
متن کامل