A Delayed Ratio-dependent Predator-prey System with Stage-structured and Impulsive Stocking on Predator
نویسندگان
چکیده
In this paper, a delayed ratio-dependent Holling-III predator-prey system with stage-structured and impulsive stocking on predator and continuous harvesting on prey is considered. We obtain sufficient conditions of the global attractivity of prey-extinction periodic solution and the permanence of the system. These results show that the behavior of impulsive stocking on predator plays an important role for the permanence of the system. We also prove that all solutions of the system are uniformly ultimately bounded. Our results show that the biological resource management is effective and reliable. AMS Subject Classification: 34A37, 34K45
منابع مشابه
Threshold harvesting policy and delayed ratio-dependent functional response predator-prey model
This paper deals with a delayed ratio-dependent functional response predator-prey model with a threshold harvesting policy. We study the equilibria of the system before and after the threshold. We show that the threshold harvesting can improve the undesirable behavior such as nonexistence of interior equilibria. The global analysis of the model as well as boundedness and permanence properties a...
متن کاملHarvesting Control for a Stage-Structured Predator-Prey Model with Ivlev's Functional Response and Impulsive Stocking on Prey
We investigate a delayed stage-structured Ivlev’s functional response predator-prey model with impulsive stocking on prey and continuous harvesting on predator. Sufficient conditions of the global attractivity of predator-extinction periodic solution and the permanence of the system are obtained. These results show that the behavior of impulsive stocking on prey plays an important role for the ...
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کاملDiscretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos
This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...
متن کاملDynamical behavior of a stage structured prey-predator model
In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...
متن کامل