On an optimal quadrature formula in Sobolev space L2(m)(0, 1)

نویسندگان

  • Kholmat Mahkambaevich Shadimetov
  • Abdullo Rakhmonovich Hayotov
  • F. A. Nuraliev
چکیده

In this paper in the space L (m) 2 (0, 1) the problem of construction of optimal quadrature formulas is considered. Here the quadrature sum consists on values of integrand at nodes and values of first derivative of integrand at the end points of integration interval. The optimal coefficients are found and norm of the error functional is calculated for arbitrary fixed N and for any m ≥ 2. It is shown that when m = 2 and m = 3 the Euler-Maclaurin quadrature formula is optimal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Quadrature Formula in the Sense of Sard in K2(p3) Space

We construct an optimal quadrature formula in the sense of Sard in the Hilbert space K2(P3). Using Sobolev’s method we obtain new optimal quadrature formula of such type and give explicit expressions for the corresponding optimal coefficients. Furthermore, we investigate order of the convergence of the optimal formula and prove an asymptotic optimality of such a formula in the Sobolev space L 2...

متن کامل

Optimal Quadrature Formulas for the Cauchy Type Singular Integral in the Sobolev Space

Abstract This paper studies the problem of construction of the optimal quadrature formula in the sense of Sard in (2) 2 ( 1,1) L − S.L.Sobolev space for approximate calculation of the Cauchy type singular integral. Using the discrete analogue of the operator 4 4 / d dx we obtain new optimal quadrature formulas. Furthermore, explicit formulas of the optimal coefficients are obtained. Finally, in...

متن کامل

Optimal Quadrature Formulas with Derivative in the Space

Abstract This paper studies the problem of construction of optimal quadrature formulas in the sense of Sard in the space ( ) 2 (0,1) m L . In this paper the quadrature sum consists of values of the integrand and its first derivative at nodes. The coefficients of optimal quadrature formulas are found and the norm of the optimal error functional is calculated for arbitrary natural number 1 N m ≥ ...

متن کامل

OPTIMAL QUADRATURE FORMULAS FOR FOURIER COEFFICIENTS IN W ( m , m − 1 ) 2 SPACE

This paper studies the problem of construction of optimal quadrature formulas in the sense of Sard in the W (m,m−1) 2 [0, 1] space for calculating Fourier coefficients. Using S. L. Sobolev’s method we obtain new optimal quadrature formulas of such type for N + 1 ≥ m, where N + 1 is the number of the nodes. Moreover, explicit formulas for the optimal coefficients are obtained. We investigate the...

متن کامل

Asymptotic Behavior of L2-normalized Eigenfunctions of the Laplace-beltrami Operator on a Closed Riemannian Manifold

Let e(x, y, λ) be the spectral function and χλ the unit band spectral projection operator, with respect to the LaplaceBeltrami operator ∆M on a closed Riemannian manifold M . We firstly review the one-term asymptotic formula of e(x, x, λ) as λ → ∞ by Hörmander (1968) and the one of ∂ x ∂ β y e(x, y, λ)|x=y as λ → ∞ in a geodesic normal coordinate chart by the author (2004) and the sharp asympto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 243  شماره 

صفحات  -

تاریخ انتشار 2013