Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers
نویسندگان
چکیده
Considerable evidence suggests that during the progression of complex diseases, the deteriorations are not necessarily smooth but are abrupt, and may cause a critical transition from one state to another at a tipping point. Here, we develop a model-free method to detect early-warning signals of such critical transitions, even with only a small number of samples. Specifically, we theoretically derive an index based on a dynamical network biomarker (DNB) that serves as a general early-warning signal indicating an imminent bifurcation or sudden deterioration before the critical transition occurs. Based on theoretical analyses, we show that predicting a sudden transition from small samples is achievable provided that there are a large number of measurements for each sample, e.g., high-throughput data. We employ microarray data of three diseases to demonstrate the effectiveness of our method. The relevance of DNBs with the diseases was also validated by related experimental data and functional analysis.
منابع مشابه
Detecting tissue-specific early warning signals for complex diseases based on dynamical network biomarkers: study of type 2 diabetes by cross-tissue analysis
Identifying early warning signals of critical transitions during disease progression is a key to achieving early diagnosis of complex diseases. By exploiting rich information of high-throughput data, a novel model-free method has been developed to detect early warning signals of diseases. Its theoretical foundation is based on dynamical network biomarker (DNB), which is also called as the drive...
متن کاملDeciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis
The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the u...
متن کاملUsing Multi-objective Optimization to Identify Dynamical Network Biomarkers as Early-warning Signals of Complex Diseases
Biomarkers have gained immense scientific interest and clinical value in the practice of medicine. With unprecedented advances in high-throughput technologies, research interest in identifying novel and customized disease biomarkers for early detection, diagnosis, or drug responses is rapidly growing. Biomarkers can be identified in different levels of molecular biomarkers, networks biomarkers ...
متن کاملSeveral Indicators of Critical Transitions for Complex Diseases Based on Stochastic Analysis
Many complex diseases (chronic disease onset, development and differentiation, self-assembly, etc.) are reminiscent of phase transitions in a dynamical system: quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. Understanding such nonlinear behaviors is critical to dissect the multiple genetic/environmen...
متن کاملIdentifying early-warning signals of critical transitions with strong noise by dynamical network markers
Identifying early-warning signals of a critical transition for a complex system is difficult, especially when the target system is constantly perturbed by big noise, which makes the traditional methods fail due to the strong fluctuations of the observed data. In this work, we show that the critical transition is not traditional state-transition but probability distribution-transition when the n...
متن کامل