Exploiting Social #-Tagging Behavior in Twitter for Information Filtering and Recommendation
نویسندگان
چکیده
We present a ranking approach for Twitter documents that exploits social hashtagging behavior. We first map topics of user interest, represented by keywords, to a set of twitter hashtags that we use as query terms to retrieve twitter documents (tweets) based on tf-idf scores, with the additional restrictions that the documents retrieved should occur before the query timestamp. We show that this simple method performs significantly better than a disjunctive baseline based on the topic description.
منابع مشابه
Exploiting Popularity and Similarity for Link Recommendation in Twitter Networks
Twitter functions both as a social network and an information network, where users follow other users to make social connections as well as to receive information. Both popularity and similarity are important factors that drive the growth of the Twitter network. In this paper, we propose two approaches to exploiting both popularity and similarity for link recommendation. The first approach empl...
متن کاملAutomatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملA comparative study of heterogeneous item recommendations in social systems
While recommendation approaches exploiting different input sources have started to proliferate in the literature, an explicit study of the effect of the combination of heterogeneous inputs is still missing. On the other hand, in this context there are sides to recommendation quality requiring further characterisation and methodological research –a gap that is acknowledged in the field. We prese...
متن کاملUsing Social Tags and User Rating Patterns for Collaborative Filtering
The overwhelming supply of online information on the Web makes finding better ways to separate important information from the noisy data ever more important. Recommender systems may help users deal with the information overloading issue, yet their performance appears to have stalled in currently available approaches. In this study, the authors propose and examine a novel user profiling approach...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کامل