The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus.
نویسندگان
چکیده
Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix-loop-helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures.
منابع مشابه
The seco-iridoid pathway from Catharanthus roseus
The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availab...
متن کاملThe basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus.
Jasmonates are plant signalling molecules that play key roles in defence against insects and certain pathogens, among others by controlling the biosynthesis of protective secondary metabolites. In Catharanthus roseus, the AP2/ERF-domain transcription factor ORCA3 controls the jasmonate-responsive expression of several genes encoding enzymes involved in terpenoid indole alkaloid biosynthesis. OR...
متن کاملBasic helix-loop-helix transcription factors and regulation of alkaloid biosynthesis.
Transcription factors of the basic Helix-Loop-Helix (bHLH) family play a central role in cell proliferation, determination, and differentiation. In plants, the regulatory functions of bHLHs in phenylpropanoid biosynthesis have been well established with regard to other interacting-proteins; i.e., MYB and WD40 repeat proteins. On the other hand, those in alkaloid biosynthesis are greatly limited...
متن کاملOverexpression of ORCA3 and G10H in Catharanthus roseus Plants Regulated Alkaloid Biosynthesis and Metabolism Revealed by NMR-Metabolomics
In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA) biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain) gene alone or integrated with the G10H (...
متن کاملThe transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus.
Catharanthus roseus produces a large array of terpenoid indole alkaloids (TIAs) that are an important source of natural or semisynthetic anticancer drugs. The biosynthesis of TIAs is tissue specific and induced by certain phytohormones and fungal elicitors, indicating the involvement of a complex transcriptional control network. However, the transcriptional regulation of the TIA pathway is poor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 26 شماره
صفحات -
تاریخ انتشار 2015