Seismic attenuation tomography using the frequency shift method
نویسندگان
چکیده
We present a method for estimating seismic attenuation based on frequency shift data. In most natural materials, seismic attenuation increases with frequency. The high-frequency components of the seismic signal are attenuated more rapidly than the low-frequency components as waves propagate. As a result, the centroid of the signal’s spectrum experiences a downshift during propagation. Under the assumption of a frequencyindependent Q model, this downshift is proportional to a path integral through the attenuation distribution and can be used as observed data to reconstruct the attenuation distribution tomographically. The frequency shift method is applicable in any seismic survey geometry where the signal bandwidth is broad enough and the attenuation is high enough to cause noticeable losses of high frequencies during propagation. In comparison to some other methods of estimating attenuation, our frequency shift method is relatively insensitive to geometric spreading, reflection and transmission effects, source and receiver coupling and radiation patterns, and instrument responses. Tests of crosswell attenuation tomography on 1-D and 2-D geological structures are presented.
منابع مشابه
Enhanced oil recovery monitoring using P-wave attenuation
Crosswell attenuation tomography is used to image reservoir zones that were flooded by carbon dioxide. The swept zones contain mixtures of oil, water and carbon dioxide. Monitoring the saturation of these fluids is an important part of a enhanced oil recovery process. We estimate the changes in P-wave attenuation caused by the injection process. Laboratory data on flooded cores are analyzed in ...
متن کاملApplication of Single-Frequency Time-Space Filtering Technique for Seismic Ground Roll and Random Noise Attenuation
Time-frequency filtering is an acceptable technique for attenuating noise in 2-D (time-space) and 3-D (time-space-space) reflection seismic data. The common approach for this purpose is transforming each seismic signal from 1-D time domain to a 2-D time-frequency domain and then denoising the signal by a designed filter and finally transforming back the filtered signal to original time domain. ...
متن کاملQ estimation from reflection seismic data for hydrocarbon detection using a modified frequency shift method
As a powerfully diagnostic tool for structural interpretation, reservoir characterization, and hydrocarbon detection, quality factor Q provides useful information in seismic processing and interpretation. Popular methods, like the spectral ratio (SR) method, central frequency shift (CFS) method and peak frequency shift (PFS) method, have their respective limitations in dealing with field seismi...
متن کاملAttenuation of spatial aliasing in CMP domain by non-linear interpolation of seismic data along local slopes
Spatial aliasing is an unwanted side effect that produces artifacts during seismic data processing, imaging and interpolation. It is often caused by insufficient spatial sampling of seismic data and often happens in CMP (Common Mid-Point) gather. To tackle this artifact, several techniques have been developed in time-space domain as well as frequency domain such as frequency-wavenumber, frequen...
متن کاملSeismic Attenuation Characterization Using Tracked Vehicles
Target classification is one of the most important issues in battlefield situational awareness. As seismic signals are an effective means of obtaining such information, any knowledge of the subsurface environment in which the target signal propagates is very important in either developing or fine-tuning classification algorithms. Seismic signal attenuation is an essential subsurface environment...
متن کامل