Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging.

نویسندگان

  • D J Frankel
  • J R Pfeiffer
  • Z Surviladze
  • A E Johnson
  • J M Oliver
  • B S Wilson
  • A R Burns
چکیده

Simultaneous atomic force microscopy (AFM) and confocal fluorescence imaging were used to observe in aqueous buffer the three-dimensional landscape of the inner surface of membrane sheets stripped from fixed tumor mast cells. The AFM images reveal prominent, irregularly shaped raised domains that label with fluorescent markers for both resting and activated immunoglobin E receptors (FcepsilonRI), as well as with cholera toxin-aggregated GM1 and clathrin. The latter suggests that coated pits bud from these regions. These features are interspersed with flatter regions of membrane and are frequently surrounded and interconnected by cytoskeletal assemblies. The raised domains shrink in height by approximately 50% when cholesterol is extracted with methyl-beta-cyclodextrin. Based on composition, the raised domains seen by AFM correspond to the cholesterol-enriched dark patches observed in transmission electron microscopy (TEM). These patches were previously identified as sites of signaling and endocytosis based on their localization of activated FcepsilonRI, at least 10 associated signaling molecules, and the presence of clathrin-coated pits. Overall the data suggest that signaling and endocytosis occur in mast cells from raised membrane regions that depend on cholesterol for their integrity and may be organized in specific relationship with the cortical cytoskeleton.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performing Enhanced Multiparameter Cell Imaging with Combined Fluorescence Lifetime Imaging Microscopy and Atomic Force Microscopy

optically encoded information about processes in live cells. Atomic force microscopy, on the other hand, provides nanometer-resolved surface topography and mechanical information, and has recently been expanded to nanometerresolved live cell mechanical property mapping. The integration of the two advanced live cell imaging techniques into one tool, with the capability to acquire simultaneous na...

متن کامل

Simultaneous AFM/Fluorescence Imaging of Living Cells – Fluorescence-guided Force Spectroscopy

High resolution atomic force microscopy (AFM) can be performed simultaneously with optical microscopy techniques, such as fluorescence or differential interference contrast (DIC) microscopy. The combined methodologies provide complementary information about the studied sample which establishes the basis for a better understanding of physiological processes and the function of biomolecules, and ...

متن کامل

A microfluidic biochip for locally confined stimulation of cells within an epithelial monolayer† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra11943g

A key factor determining the fate of individual cells within an epithelium is the unique microenvironment that surrounds each cell. It regulates location-dependent differentiation into specific cellular sub-types, but, on the other hand, a disturbed microenvironment can promote malignant transformation of epithelial cells leading to cancer formation. Here, we present a tool based on a microflui...

متن کامل

Nanoscale IR imaging by combining AFM and optical methodology

This review outlines an emerging nano-imaging method referred to as Atomic Force Microscopy Infrared Microscopy that enables IR imaging with lateral nanoscale resolution based on combining AFM and optical methodologies. Atomic Force Microscopy Infrared Microscopy enables imaging with nanoscale resolution and enables simultaneously AFM topography imaging. This review outlines the methodology and...

متن کامل

Phase imaging of proton exchange membranes under attractive and repulsive tip-sample interaction forces.

The nature of tip-sample interaction forces in atomic force microscopy (AFM) phase imaging strongly affects the resolution of proton conducting domains mapped at the surface of Nafion membranes. Images acquired in repulsive mode overestimated the area of individual proton conducting domains by a factor of 4 (360 vs 90 nm(2)) and underestimated the number of these domains by a factor of 3 (0.9 d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 90 7  شماره 

صفحات  -

تاریخ انتشار 2006