Apical Na+/H+ antiporter and glycolysis-dependent H+-ATPase regulate intracellular pH in the rabbit S3 proximal tubule.
نویسنده
چکیده
The apical transport processes responsible for proton secretion were studied in the isolated perfused rabbit S3 proximal tubule. Intracellular pH (pHi) was measured with the pH dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein. Steady state pHi in S3 tubules in nominally HCO3(-)-free solutions was 7.08 +/- 0.03. Removal of Na+ (lumen) caused a decrease in pHi of 0.34 +/- 0.06 pH/min. The decrease in pHi was inhibited 62% by 1 mM amiloride (lumen) and was unaffected by 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (lumen) and Cl- removal (lumen, bath). After a brief exposure to 20 mM NH4Cl, pHi fell by approximately 0.7 and recovered at a rate of 0.89 +/- 0.15 pH/min in the nominal absence of Na+, HCO3-, organic anions, and SO4(2-) (lumen, bath). 1 mM N,N'-dicyclohexylcarbodiimide (lumen), 1 mM N-ethylmaleimide (lumen), 0.5 mM colchicine (bath), and 0.5 mM iodoacetic acid (lumen, bath) inhibited the Na+-independent pHi recovery rate by 73%, 55%, 77%, and 86%, respectively, whereas 1 mM KCN (lumen, bath) did not inhibit pHi recovery. Reduction of intracellular, but not extracellular chloride, also decreased the Na+-independent pHi recovery rate. In conclusion, the S3 proximal tubule has an apical Na+/H+ antiporter with a Michaelis constant for Na+ of 29 mM and a maximum velocity of 0.47 pH/min. S3 tubules also possess a plasma membrane H+-ATPase that can regulate pHi, has a requirement for intracellular chloride, and utilizes ATP derived primarily from glycolysis.
منابع مشابه
Basolateral membrane Na+/H+ antiport, Na+/base cotransport, and Na+-independent Cl-/base exchange in the rabbit S3 proximal tubule.
The basolateral membrane Na+ and Cl(-)-dependent acid-base transport processes were studied in the isolated perfused rabbit S3 proximal straight tubule. Intracellular pH (pHi) was measured with 2'7'-biscarboxyethyl-5,6-carboxyfluorescein (BCECF) and a microfluorometer coupled to the tubule perfusion apparatus. Reduction of basolateral HCO3- from 25 to 5 mM caused pHi to decrease at a rate of 0....
متن کاملNeonatal rabbit juxtamedullary proximal convoluted tubule acidification.
The present in vitro microperfusion study examined apical membrane Na+/H+ antiporter and basolateral membrane Na(HCO3)3 symporter activity in newborn and adult juxtamedullary proximal convoluted tubules. Proton fluxes were determined from the initial rate of change of intracellular pH after a change in the luminal or bathing solution, buffer capacity, and tubular volume of newborn and adult tub...
متن کاملNeonatal rabbit proximal tubule basolateral membrane Na+/H+antiporter and Cl-/base exchange.
The present in vitro microperfusion study examined the maturation of Na+/H+antiporter and Cl-/base exchanger on the basolateral membrane of rabbit superficial proximal straight tubules (PST). Intracellular pH (pHi) was measured with the pH-sensitive fluorescent dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein in neonatal and adult superficial PST. Na+/H+antiporter activity was examined aft...
متن کاملLuminal flow modulates H+-ATPase activity in the cortical collecting duct (CCD).
Epithelial Na(+) channel (ENaC)-mediated Na(+) absorption and BK channel-mediated K(+) secretion in the cortical collecting duct (CCD) are modulated by flow, the latter requiring an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), microtubule integrity, and exocytic insertion of preformed channels into the apical membrane. As axial flow modulates HCO(3)(-) reabsorption in the proxi...
متن کاملIntracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity.
Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H(+)-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pH(i)) regulation in unstimulated gland cells is unknown. We used the fluorescent d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 80 4 شماره
صفحات -
تاریخ انتشار 1987