Demography and Dispersal: Calculation and Sensitivity Analysis of Invasion Speed for Structured Populations
نویسندگان
چکیده
A fundamental characteristic of any biological invasion is the speed at which the geographic range of the population expands. This invasion speed is determined by both population growth and dispersal. We construct a discrete-time model for biological invasions that couples matrix population models (for population growth) with integrodifference equations (for dispersal). This model captures the important facts that individuals differ both in their vital rates and in their dispersal abilities, and that these differences are often determined by age, size, or developmental stage. For an important class of these equations, we demonstrate how to calculate the population’s asymptotic invasion speed. We also derive formulas for the sensitivity and elasticity of the invasion speed to changes in demographic and dispersal parameters. These results are directly comparable to the familiar sensitivity and elasticity of population growth rate. We present illustrative examples, using published data on two plants: teasel (Dipsacus sylvestris) and Calathea ovandensis. Sensitivity and elasticity of invasion speed is highly correlated with the sensitivity and elasticity of population growth rate in both populations. We also find that, when dispersal contains both longand short-distance components, it is the long-distance component that governs the invasion speed—even when long-distance dispersal is rare.
منابع مشابه
Contributions of demography and dispersal parameters to the spatial spread of a stage-structured insect invasion.
Stage-structured models that integrate demography and dispersal can be used to identify points in the life cycle with large effects on rates of population spatial spread, information that is vital in the development of containment strategies for invasive species. Current challenges in the application of these tools include: (1) accounting for large uncertainty in model parameters, which may vio...
متن کاملTemporally variable dispersal and demography can accelerate the spread of invading species.
We analyze how temporal variability in local demography and dispersal combine to affect the rate of spread of an invading species. Our model combines state-structured local demography (specified by an integral or matrix projection model) with general dispersal distributions that may depend on the state of the individual or its parent. It allows very general patterns of stationary temporal varia...
متن کاملThe genetic signature of rapid range expansions: How dispersal, growth and invasion speed impact heterozygosity and allele surfing.
As researchers collect spatiotemporal population and genetic data in tandem, models that connect demography and dispersal to genetics are increasingly relevant. The dominant spatiotemporal model of invasion genetics is the stepping-stone model which represents a gradual range expansion in which individuals jump to uncolonized locations one step at a time. However, many range expansions occur qu...
متن کاملSpatial dynamics of invasive Carduus thistles
Managing invasive species is inherently a spatial problem, even though the application of management is local. For efficient management of invasive species, we must therefore understand their spatial population dynamics. Once key demographic and dispersal rates are studied in detail, spatial population models can be constructed and utilized to evaluate the impact of various management options. ...
متن کاملInvasion speeds of Triatoma dimidiata, vector of Chagas disease: An application of orthogonal polynomials method.
Demographic processes and spatial dispersal of Triatoma dimidiata, a triatomine species vector of Chagas disease, are modeled by integrodifference equations to estimate invasion capacity of this species under different ecological conditions. The application of the theory of orthogonal polynomials and the steepest descent method applied to these equations, allow a good approximation of the abund...
متن کامل