Expansions of CAG.CTG repeats in immortalized human astrocytes.
نویسندگان
چکیده
Expansions of trinucleotide repeats (TNRs) are the genetic cause for a number of neurodegenerative disorders. In some of these diseases, ongoing somatic expansions in the brain are thought to contribute to disease progression. Expansions can occur in both neurons and supporting glial cells, but little is known about molecular mechanisms of expansion in these cells, particularly glia. To help address this issue, a cultured human astrocyte cell line called SVG-A was tested for expansions of CAG*CTG repeats present on a shuttle vector. A quantitative genetic selection showed that +4 to +15 repeat expansions occur readily for starting alleles of 25 repeats, thereby spanning the important boundary between short stable repeats and longer more unstable CAG*CTG tracts. These expansions in glial cell culture, as in humans, were sequence and length-dependent, and were inhibited by the presence of a sequence interruption within the triplet repeat tract. These findings suggest that the mutations seen in cell culture reflect at least some of the in vivo expansions seen in glia. Mechanistically, it was found that the direction of DNA replication through the TNR influenced the frequency of expansions, suggesting that either replication or a replication-associated process, such as DNA repair, contributes to CAG*CTG tract instability in SVG-A cells. This finding is consistent with the idea that replication-based mechanisms can be a source of TNR expansions in astrocytes, which, unlike neurons, retain proliferative capacity throughout life.
منابع مشابه
CAG·CTG repeat instability in cultured human astrocytes
Cells of the central nervous system (CNS) are prone to the devastating consequences of trinucleotide repeat (TNR) expansion. Some CNS cells, including astrocytes, show substantial TNR instability in affected individuals. Since astrocyte enrichment occurs in brain regions sensitive to neurodegeneration and somatic TNR instability, immortalized SVG-A astrocytes were used as an ex vivo model to mi...
متن کاملHistone Deacetylase Complexes Promote Trinucleotide Repeat Expansions
Expansions of DNA trinucleotide repeats cause at least 17 inherited neurodegenerative diseases, such as Huntington's disease. Expansions can occur at frequencies approaching 100% in affected families and in transgenic mice, suggesting that specific cellular proteins actively promote (favor) expansions. The inference is that expansions arise due to the presence of these promoting proteins, not t...
متن کاملExpandable DNA Repeat and Human Hereditary Disorders
Background & Aims: Nearly 30 hereditary disorders in humans result from an increase in the number of copies of simple repeats in genomic DNA, including fragile X syndrome, myotonic dystrophy, Huntington’s disease, and Friedreich’s ataxia. One the most frequently occurring types of mutation is trinucleotide repeat expansion. The present study was conducted with the aim of investigating the cause...
متن کاملInduction of chromosomal aberrations in human primary fibroblasts and immortalized cancer cells exposed to extremely-low-frequency electromagnetic fields
Background: Rapidly increasing possibilities of exposure to environmental extremely low-frequency electromagnetic fields (ELF-EMF) have become a topic of worldwide investigation. Epidemiological and laboratory studies suggest that exposure to ELF-EMF may increase cancer risk therefore assessment of chromosomal damage in various cell lines might be of predictive value for future risk es...
متن کاملFoxM1B regulates NEDD4-1 expression, leading to cellular transformation and full malignant phenotype in immortalized human astrocytes.
Our recent studies have shown that the FoxM1B transcription factor is overexpressed in human glioma tissues and that the level of its expression correlates directly with glioma grade. However, whether FoxM1B plays a role in the early development of glioma (i.e., in transformation) is unknown. In this study, we found that the FoxM1B molecule causes cellular transformation and tumor formation in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 16 24 شماره
صفحات -
تاریخ انتشار 2007