A Self-Organizing Neural Network Architecture for Navigation Using Optic Flow

نویسندگان

  • Seth Cameron
  • Stephen Grossberg
  • Frank H. Guenther
چکیده

This article describes a self-organizing neural network architecture that transforms optic flow and eye position information into representations of heading, scene depth, and moving object locations. These representations are used to navigate reactively in simulations involving obstacle avoidance and pursuit of a moving target. The network's weights are trained during an action-perception cycle in which self-generated eye and body movements produce optic flow information, thus allowing the network to tune itself without requiring explicit knowledge of sensor geometry. The confounding effect of eye movement during translation is suppressed by learning the relationship between eye movement outflow commands and the optic flow signals that they induce. The remaining optic flow field is due to only observer translation and independent motion of objects in the scene. A self-organizing feature map categorizes normalized translational flow patterns, thereby creating a map of cells that code heading directions. Heading information is then recombined with translational flow patterns in two different ways to form maps of scene depth and moving object locations. Most of the learning processes take place concurrently and evolve through unsupervised learning. Mapping the learned heading representations onto heading labels or motor commands requires additional structure. Simulations of the network verify its performance using both noise-free and noisy optic flow information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Self-organizing Neural Network Architecture for Navigation Using Optic Flow Running title: Navigation Using Optic Flow

This paper describes a self-organizing neural network architecture that transforms optic flow information into representations of heading, scene depth, and moving object locations. These representations are used to reactively navigate in simulations involving obstacle avoidance and pursuit of a moving target. The network's weights are trained during an action-perception cycle in which self-gene...

متن کامل

A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)

This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...

متن کامل

Calibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation

The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...

متن کامل

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data

The self-organizing map (SOM) is a very popular unsupervised neural-network model for the analysis of high-dimensional input data as in data mining applications. However, at least two limitations have to be noted, which are related to the static architecture of this model as well as to the limited capabilities for the representation of hierarchical relations of the data. With our novel growing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 1998