Magnetic Resonance Imaging Cooling-Reheating Protocol Indicates Decreased Fat Fraction via Lipid Consumption in Suspected Brown Adipose Tissue
نویسندگان
چکیده
OBJECTIVES To evaluate whether a water-fat magnetic resonance imaging (MRI) cooling-reheating protocol could be used to detect changes in lipid content and perfusion in the main human brown adipose tissue (BAT) depot after a three-hour long mild cold exposure. MATERIALS AND METHODS Nine volunteers were investigated with chemical-shift-encoded water-fat MRI at baseline, after a three-hour long cold exposure and after subsequent short reheating. Changes in fat fraction (FF) and R2*, related to ambient temperature, were quantified within cervical-supraclavicular adipose tissue (considered as suspected BAT, denoted sBAT) after semi-automatic segmentation. In addition, FF and R2* were quantified fully automatically in subcutaneous adipose tissue (not considered as suspected BAT, denoted SAT) for comparison. By assuming different time scales for the regulation of lipid turnover and perfusion in BAT, the changes were determined as resulting from either altered absolute fat content (lipid-related) or altered absolute water content (perfusion-related). RESULTS sBAT-FF decreased after cold exposure (mean change in percentage points = -1.94 pp, P = 0.021) whereas no change was observed in SAT-FF (mean = 0.23 pp, P = 0.314). sBAT-R2* tended to increase (mean = 0.65 s-1, P = 0.051) and SAT-R2* increased (mean = 0.40 s-1, P = 0.038) after cold exposure. sBAT-FF remained decreased after reheating (mean = -1.92 pp, P = 0.008, compared to baseline) whereas SAT-FF decreased (mean = -0.79 pp, P = 0.008, compared to after cold exposure). CONCLUSIONS The sustained low sBAT-FF after reheating suggests lipid consumption, rather than altered perfusion, as the main cause to the decreased sBAT-FF. The results obtained demonstrate the use of the cooling-reheating protocol for detecting changes in the cervical-supraclavicular fat depot, being the main human brown adipose tissue depot, in terms of lipid content and perfusion.
منابع مشابه
Magnetic resonance spectroscopy investigations of brown adipose tissue and isolated brown adipocytes.
Brown adipose tissue and collagenase-isolated brown adipocytes were investigated in rats by means of 1H and 13C nuclear magnetic resonance spectroscopy. After chloroform-methanol extraction of brown adipose tissue, proton and natural abundance 13C spectra of the chloroform fraction showed resonances attributable to triglycerides, and were qualitatively similar to those of the corresponding frac...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملIdentification of brown adipose tissue in mice with fat-water IDEAL-MRI.
PURPOSE To investigate the feasibility of using IDEAL (Iterative Decomposition with Echo Asymmetry and Least squares estimation) fat-water imaging and the resultant fat fraction metric in detecting brown adipose tissue (BAT) in mice, and in differentiating BAT from white adipose tissue (WAT). MATERIALS AND METHODS Excised WAT and BAT samples and whole-mice carcasses were imaged with a rapid t...
متن کاملLocalized proton magnetic resonance spectroscopy of lipids in adipose tissue at high spatial resolution in mice in vivo.
We describe a localized proton magnetic resonance spectroscopy ((1)H-MRS) method for in vivo measurement of lipid composition in very small voxels (1.5 mm x 1.5 mm x 1.5 mm) in adipose tissue in mice. The method uses localized point-resolved spectroscopy to collect (1)H spectra from voxels in intra-abdominal white adipose tissue (WAT) and brown adipose tissue (BAT) deposits. Nonlinear least-squ...
متن کاملBrown Adipose Tissue in the Buccal Fat Pad during Infancy
BACKGROUND The buccal fat pad (BFP) is an encapsulated mass of adipose tissue thought to enhance the sucking capabilities of the masticatory muscles during infancy. To date, no conclusive evidence has been provided as to the composition of the BFP in early postnatal life. OBJECTIVE The purpose of this study was to examine whether the BFP of neonates and infants is primarily composed of white ...
متن کامل