Automatic Approach to Vhr Satellite Image Classification
نویسنده
چکیده
In this paper, we present a proposition of a fully automatic classification of VHR satellite images. Unlike the most widespread approaches: supervised classification, which requires prior defining of class signatures, or unsupervised classification, which must be followed by an interpretation of its results, the proposed method requires no human intervention except for the setting of the initial parameters. The presented approach bases on both spectral and textural analysis of the image and consists of 3 steps. The first step, the analysis of spectral data, relies on NDVI values. Its purpose is to distinguish between basic classes, such as water, vegetation and non-vegetation, which all differ significantly spectrally, thus they can be easily extracted basing on spectral analysis. The second step relies on granulometric maps. These are the product of local granulometric analysis of an image and present information on the texture of each pixel neighbourhood, depending on the texture grain. The purpose of texture analysis is to distinguish between different classes, spectrally similar, but yet of different texture, e.g. bare soil from a built-up area, or low vegetation from a wooded area. Due to the use of granulometric analysis, based on mathematical morphology opening and closing, the results are resistant to the border effect (qualifying borders of objects in an image as spaces of high texture), which affect other methods of texture analysis like GLCM statistics or fractal analysis. Therefore, the effectiveness of the analysis is relatively high. Several indices based on values of different granulometric maps have been developed to simplify the extraction of classes of different texture. The third and final step of the process relies on a vegetation index, based on near infrared and blue bands. Its purpose is to correct partially misclassified pixels. All the indices used in the classification model developed relate to reflectance values, so the preliminary step of recalculation of pixel DNs to reflectance is required. Thanks to this, the proposed approach is in theory universal, and might be applied to different satellite system images of different acquisition dates. The test data consists of 3 Pleiades images captured on different dates. Research allowed to determine optimal indices values. Using the same parameters, we obtained a very good accuracy of extraction of 5 land cover/use classes: water, low vegetation, bare soil, wooded area and built-up area in all the test images (kappa from 87% to 96%). What constitutes important, even significant changes in parameter values, did not cause a significant declination of classification accuracy, which demonstrates how robust the proposed method is. * Corresponding author
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کامل3D modeling of large urban areas with stereo VHR satellite imagery: lessons learned
This paper discusses the potentials of very high-resolution (VHR) stereo imagery for automatic generation of digital surface models (DSM) and 3D information extraction on large metropolitan cities. Stereo images acquired by GeoEye-1 on Dakar (Senegal) and Guatemala City (Guatemala) and by WorldView-2 on Panama City (Panama), Constitucion (Chile), Kabul (Afghanistan), Teheran (Iran), Kathmandu (...
متن کاملShadow Detection from Very High Resoluton Satellite Image Using Grabcut Segmentation and Ratio-band Algorithms
Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows,...
متن کاملStereo Based Very High Resolution Satellite Image Classification Using Rpcs
Detection of urban objects in very high resolution (VHR) satellite imagery is challenging due to the similarities in the spectral and textural characteristics of urban land cover classes. Therefore, additional information such as elevation data is required for a proper classification. In this study, instead of LiDAR data, elevation information generated from satellite stereo images is used to a...
متن کاملTopic Modelling for Object-Based Unsupervised Classification of VHR Panchromatic Satellite Images Based on Multiscale Image Segmentation
Image segmentation is a key prerequisite for object-based classification. However, it is often difficult, or even impossible, to determine a unique optimal segmentation scale due to the fact that various geo-objects, and even an identical geo-object, present at multiple scales in very high resolution (VHR) satellite images. To address this problem, this paper presents a novel unsupervised objec...
متن کاملVolumetric Forest Change Detection through Vhr Satellite Imagery
Quick and economical ways of detecting of planimetric and volumetric changes of forest areas are in high demand. A research platform, called FORSAT (A satellite processing platform for high resolution forest assessment), was developed for the extraction of 3D geometric information from VHR (very-high resolution) imagery from satellite optical sensors and automatic change detection. This 3D fore...
متن کامل