Processing and activation of latent heparanase occurs in lysosomes.

نویسندگان

  • Anna Zetser
  • Flonia Levy-Adam
  • Victoria Kaplan
  • Svetlana Gingis-Velitski
  • Yulia Bashenko
  • Shay Schubert
  • Moshe Y Flugelman
  • Israel Vlodavsky
  • Neta Ilan
چکیده

Heparanase is a heparan sulfate degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Heparanase is synthesized as a 65 kDa non-active precursor that subsequently undergoes proteolytic cleavage, yielding 8 kDa and 50 kDa protein subunits that heterodimerize to form an active enzyme. The protease responsible for heparanase processing is currently unknown, as is the sub-cellular processing site. In this study, we characterize an antibody (733) that preferentially recognizes the active 50 kDa heparanase form as compared to the non-active 65 kDa heparanase precursor. We have utilized this and other anti-heparanase antibodies to study the cellular localization of the latent 65 kDa and active 50 kDa heparanase forms during uptake and processing of exogenously added heparanase. Interestingly, not only the processed 50 kDa, but also the 65 kDa heparanase precursor was localized to perinuclear vesicles, suggesting that heparanase processing occurs in lysosomes. Indeed, heparanase processing was completely inhibited by chloroquine and bafilomycin A1, inhibitors of lysosome proteases. Similarly, processing of membrane-targeted heparanase was also chloroquine-sensitive, further ruling out the plasma membrane as the heparanase processing site. Finally, we provide evidence that antibody 733 partially neutralizes the enzymatic activity of heparanase, suggesting that the N-terminal region of the molecule is involved in assuming an active conformation. Monoclonal antibodies directed to this region are likely to provide specific heparanase inhibitors and hence assist in resolving heparanase functions under normal and pathological conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis.

Heparanase is an endoglycosidase which cleaves heparan sulfate (HS) and hence participates in degradation and remodeling of the extracellular matrix (ECM). Heparanase is preferentially expressed in human tumors and its over-expression in tumor cells confers an invasive phenotype in experimental animals. The enzyme also releases angiogenic factors from the ECM and thereby induces an angiogenic r...

متن کامل

Glucose-induced endothelial heparanase secretion requires cortical and stress actin reorganization.

AIMS Heparanase, which specifically cleaves carbohydrate chains of heparan sulfate, has been implicated in the pathology of diabetes-associated complications. Using high glucose (HG) to replicate hyperglycaemia observed following diabetes, the present study was designed to determine the mechanism by which HG initiates endothelial heparanase secretion. METHOD AND RESULTS To examine the effect ...

متن کامل

Endothelial cell heparanase taken up by cardiomyocytes regulates lipoprotein lipase transfer to the coronary lumen after diabetes.

After diabetes, the heart has a singular reliance on fatty acid (FA) for energy production, which is achieved by increased coronary lipoprotein lipase (LPL) that breaks down circulating triglycerides. Coronary LPL originates from cardiomyocytes, and to translocate to the vascular lumen, the enzyme requires liberation from myocyte surface heparan sulfate proteoglycans (HSPGs), an activity that n...

متن کامل

Human heparanase is localized within lysosomes in a stable form.

Heparanase is an endo-beta-D-glucuronidase involved in degradation of heparan sulfate (HS) and extracellular matrix (ECM) of a wide range of cells of vertebrate and invertebrate tissues. The enzymatic activity of heparanase is characterized by specific intrachain cleavage of glycosidic bonds with a hydrolase mechanism. This enzyme facilitates cell invasion and hence plays a role in tumor metast...

متن کامل

Upregulation of Endothelin-1/Endothelin A Receptor Expression Correlates with Heparanase Expression in Ovarian Carcinoma

Background: Heparanase and endothelin-1/endothelin A receptor (ET-1/ETAR) expressions increase in cancer. This condition enhances tumor progression and correlates with poor survival. Limited data are documented regarding the role of heparanase and ET-1/ETAR in epithelial ovarian cancer (EOC). We sought to characterize the correlation between heparanase and ET-1/ETAR in EOC.Methods: Thirty patie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 117 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2004