WNK4 kinase is a negative regulator of K+-Cl- cotransporters.

نویسندگان

  • Tomas Garzón-Muvdi
  • Diana Pacheco-Alvarez
  • Kenneth B E Gagnon
  • Norma Vázquez
  • José Ponce-Coria
  • Erika Moreno
  • Eric Delpire
  • Gerardo Gamba
چکیده

WNK kinases [with no lysine (K) kinase] are emerging as regulators of several membrane transport proteins in which WNKs act as molecular switches that coordinate the activity of several players. Members of the cation-coupled chloride cotransporters family (solute carrier family number 12) are one of the main targets. WNK3 activates the Na(+)-driven cotransporters NCC, NKCC1, and NKCC2 and inhibits the K(+)-driven cotransporters KCC1 to KCC4. WNK4 inhibits the activity of NCC and NKCC1, while in the presence of the STE20-related proline-alanine-rich kinase SPAK activates NKCC1. Nothing is known, however, regarding the effect of WNK4 on the K(+)-Cl(-) cotransporters. Using the heterologous expression system of Xenopus laevis oocytes, here we show that WNK4 inhibits the activity of the K(+)-Cl(-) cotransporters KCC1, KCC3, and KCC4 under cell swelling, a condition in which these cotransporters are maximally active. The effect of WNK4 requires its catalytic activity because it was lost by the substitution of aspartate 318 for alanine (WNK4-D318A) that renders WNK4 catalytically inactive. In contrast, three different WNK4 missense mutations that cause pseudohypoaldosteronism type II do not affect the WNK4-induced inhibition of KCC4. Finally, we observed that catalytically inactive WNK4-D318A is able to bypass the tonicity requirements for KCC2 and KCC3 activation in isotonic conditions. This effect is enhanced by the presence of catalytically inactive SPAK, was prevented by the presence of protein phosphatase inhibitors, and was not present in KCC1 and KCC4. Our results reveal that WNK4 regulates the activity of the K(+)-Cl(-) cotransporters expressed in the kidney.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia.

Mutations in the serine-threonine kinase WNK4 [with no lysine (K) 4] cause pseudohypoaldosteronism type II, a Mendelian disease featuring hypertension with hyperkalemia. In the kidney, WNK4 regulates the balance between NaCl reabsorption and K(+) secretion via variable inhibition of the thiazide-sensistive NaCl cotransporter and the K(+) channel ROMK. We now demonstrate expression of WNK4 mRNA ...

متن کامل

Volume sensitivity of cation-Cl- cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4.

In the present study, we have demonstrated functional interaction between Ste20-related proline-alanine-rich kinase (SPAK), WNK4 [with no lysine (K)], and the widely expressed Na+-K+-2Cl- cotransporter type 1 (NKCC1). NKCC1 function, which we measured in Xenopus laevis oocytes under both isosmotic (basal) and hyperosmotic (stimulated) conditions, was unaffected when SPAK and WNK4 were expressed...

متن کامل

WNK4-mediated regulation of renal ion transport proteins.

Point mutations in WNK4 [for With No K (lysine)], a serine-threonine kinase that is expressed in the distal nephron of the kidney, are linked to familial hyperkalemic hypertension (FHH). The imbalanced electrolyte homeostasis in FHH has led to studies toward an understanding of WNK4-mediated regulation of ion transport proteins in the kidney. A growing number of ion transport proteins for Na(+)...

متن کامل

WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo.

Homeostasis of intravascular volume, Na(+), Cl(-), and K(+) is interdependent and determined by the coordinated activities of structurally diverse mediators in the distal nephron and the distal colon. The behavior of these flux pathways is regulated by the renin-angiotensin-aldosterone system; however, the mechanisms that allow independent modulation of individual elements have been obscure. Pr...

متن کامل

Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension.

A recently discovered family of protein kinases is responsible for an autosomal-dominant disease known as Gordon's syndrome or pseudohypoaldosteronism type II (PHA-II) that features hyperkalemia and hyperchloremic metabolic acidosis, accompanied by hypertension and hypercalciuria. Four genes have been described in this kinase family, which has been named WNK, due to the absence of a key lysine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 292 4  شماره 

صفحات  -

تاریخ انتشار 2007