Thermoelectric magnetohydrodynamic effects on the crystal growth rate of undercooled Ni dendrites

نویسندگان

  • A Kao
  • J Gao
  • K Pericleous
چکیده

In the undercooled solidification of pure metals, the dendrite tip velocity has been shown experimentally to have a strong dependence on the intensity of an external magnetic field, exhibiting several maxima and minima. In the experiments conducted in China, the undercooled solidification dynamics of pure Ni was studied using the glass fluxing method. Visual recordings of the progress of solidification are compared at different static fields up to 6 T. The introduction of microscopic convective transport through thermoelectric magnetohydrodynamics is a promising explanation for the observed changes of tip velocities. To address this problem, a purpose-built numerical code was used to solve the coupled equations representing the magnetohydrodynamic, thermal and solidification mechanisms. The underlying phenomena can be attributed to two competing flow fields, which were generated by orthogonal components of the magnetic field, parallel and transverse to the direction of growth. Their effects are either intensified or damped out with increasing magnetic field intensity, leading to the observed behaviour of the tip velocity. The results obtained reflect well the experimental findings.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dendritic solidification and fragmentation in undercooled Ni–Zr alloys

Kinetics of dendritic solidification and fragmentation of dendritic crystals in undercooled Ni–Zr samples are studied. Using the capacitance roximity sensor technique and a high-speed-camera system, the dendrite growth velocity has been measured as a function of initial undercooling n solidifying droplets processed by the electromagnetic levitation technique. Analyses of solidified droplets giv...

متن کامل

مطالعه تبلور و تاثیر آلاینده ها بر ترکیبات ترموالکتریکی نیمرسانا با فرمول 3(Bi0.25Sb0.75)2Te

The (Bi0.25 Sb0.75)2Te3 compound is a p-type thermoelectric semiconductor for application in thermoelectric cooling systems. To fabricate this single crystal, required elements, Bi, Sb and Te with 5N purity melted in quartz capsule at 10-6 torr pressure and rapidly quenched to room temperature. The sample crystallized by zone melting method with the rate of 8 mm per an hour at 700 oC and for...

متن کامل

Dendrite Growth Kinetics in Undercooled Melts of Intermetallic Compounds

Solidification needs an undercooling to drive the solidification front. If large undercoolings are achieved, metastable solid materials are solidified from the undercooled melt. Containerless processing provides the conditions to achieve large undercoolings since heterogeneous nucleation on container walls is completely avoided. In the present contribution both electromagnetic and electrostatic...

متن کامل

رشد بلور (Bi2Te3)0.96(Bi2Se3)0.04 به روش رشد ناحیه‌ای و بررسی تغییرات شیمیایی ترکیب در راستای رشد

The (Bi2Te3)0.96(Bi2Se3)0.04 is an n-type thermoelectric semiconductor for using in thermoelectric cooling systems. Single crystal of this composition was grown by Zone Melting Method and thermoelectric power (α 2 σ) along the crystal growth where α is the Seebeck coefficient and σ is the electrical conductivity was measured. In this measurement a gradient along length of the prepared crystalli...

متن کامل

Phase-field method for computationally efficient modeling of the solidification of binary alloy with magnetic field effect

We present a new 2D phase-field model with anisotropy, applied to the dynamics and structure of free dendrite growth during solidification process of binary alloys under the action of magnetic field. The physics of solidification problem of Ni-Cu alloy such as conditions for crystal growth rate are discussed and show good qualitative agreement with numerical simulations. In order to improve the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 376  شماره 

صفحات  -

تاریخ انتشار 2018