Higher Order Approximation , provided by correction terms , in the Meshless Finite Difference Method - applications in mechanics
نویسندگان
چکیده
منابع مشابه
Introduction to the numerical homogenization by means of the Meshless Finite Difference Method with the Higher Order Approximation
Paper focuses on application of the Meshless Finite Difference Method (MFDM) solution approach and its selected extensions to the numerical homogenization of the heterogeneous material. The most commonly used method of computer modeling for the multiscale problem (at both the macro and micro (RVE) levels) is the Finite Element Method (FEM). However, this fact does not mean that one should not s...
متن کاملA truly meshless method formulation for analysis of non-Fourier heat conduction in solids
The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملPropagation of Crack in Linear Elastic Materials with Considering Crack Path Correction Factor
Modeling of crack propagation by a finite element method under mixed mode conditions is of prime importance in the fracture mechanics. This article describes an application of finite element method to the analysis of mixed mode crack growth in linear elastic fracture mechanics. Crack - growth process is simulated by an incremental crack-extension analysis based on the maximum principal stress c...
متن کامل