Subband neural networks prediction for on-line audio signal recovery
نویسندگان
چکیده
In this paper, a subbands multirate architecture is presented for audio signal recovery. Audio signal recovery is a common problem in digital music signal restoration field, because of corrupted samples that must be replaced. The subband approach allows for the reconstruction of a long audio data sequence from forward-backward predicted samples. In order to improve prediction performances, neural networks with spline flexible activation function are used as narrow subband nonlinear forward-backward predictors. Previous neural-networks approaches involved a long training process. Due to the small networks needed for each subband and to the spline adaptive activation functions that speed-up the convergence time and improve the generalization performances, the proposed signal recovery scheme works in online (or in continuous learning) mode as a simple nonlinear adaptive filter. Experimental results show the mean square reconstruction error and maximum error obtained with increasing gap length, from 200 to 5000 samples for different musical genres. A subjective performances analysis is also reported. The method gives good results for the reconstruction of over 100 ms of audio signal with low audible effects in overall quality and outperforms the previous approaches.
منابع مشابه
Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملSubbands audio signal recovering using neural nonlinear prediction
Audio signal recovery is a common problem in digital audio restoration field, because of corrupted samples that must be replaced. In this paper a subbands architecture is presented for audio signal recovery, using neural nonlinear prediction based on adaptive spline neural networks. The experimental results show the mean square reconstruction error, and maximum error obtained with increasing ga...
متن کاملPrediction of recovery of gold thiosulfate on activated carbon using artificial neural networks
Since a high toxicity of cyanide which use as a reagent in the gold processing plant, thiosulfate has been recognized as a environmental friendly reagent for leaching of gold from ore. After gold leaching process it's important for recovery of gold from solution using adsorption or extraction methods, One of these methods is activated carbon.The loading of gold from industrial thiosulfate solut...
متن کاملAudio signal processing by neural networks
In this paper a review of architectures suitable for nonlinear real-time audio signal processing is presented. The computational and structural complexity of neural networks (NNs) represent in fact, the main drawbacks that can hinder many practical NNs multimedia applications. In particular e,cient neural architectures and their learning algorithm for real-time on-line audio processing are disc...
متن کاملDetecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks
Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2002