Local fault-tolerant quantum computation
نویسندگان
چکیده
We analyze and study the effects of locality on the fault-tolerance threshold for quantum computation. We analytically estimate how the threshold will depend on a scale parameter r which characterizes the scale-up in the size of the circuit due to encoding. We carry out a detailed seminumerical threshold analysis for concatenated coding using the seven-qubit CSS code in the local and the ‘nonlocal’ setting. First, we find that the threshold in the local model for the 7,1,3 code has a 1/r dependence, which is in correspondence with our analytical estimate. Second, the threshold, beyond the 1/r dependence, does not depend too strongly on the noise levels for transporting qubits. Beyond these results, we find that it is important to look at more than one level of concatenation in order to estimate the threshold and that it may be beneficial in certain places, like in the transportation of qubits, to do error correction only infrequently.
منابع مشابه
Fault-tolerant quantum computation for local leakage faults
We provide a rigorous analysis of fault-tolerant quantum computation in the presence of local leakage faults. We show that one can systematically deal with leakage by using appropriate leakage-reduction units such as quantum teleportation. The leakage noise is described by a Hamiltonian and the noise is treated coherently, similar to general non-Markovian noise analyzed in Refs. [TB05] and [AGP...
متن کاملFault-tolerant quantum computation with asymmetric Bacon-Shor codes
We develop a scheme for fault-tolerant quantum computation based on asymmetric Bacon-Shor codes, which works effectively against highly biased noise dominated by dephasing. We find the optimal Bacon-Shor block size as a function of the noise strength and the noise bias, and estimate the logical error rate and overhead cost achieved by this optimal code. Our fault-tolerant gadgets, based on gate...
متن کاملFault-Tolerant Quantum Computation For Local Non-Markovian Noise
We derive a threshold result for fault-tolerant quantum computation for local non-Markovian noise models. The role of error amplitude in our analysis is played by the product of the elementary gate time t0 and the spectral width of the interaction Hamiltonian between system and bath. We discuss extensions of our model and the applicability of our analysis for several physical decoherence proces...
متن کاملQuantum Error Correction and Fault Tolerant Quantum Computing
e?cient fault-tolerant quantum computing arxiv fault-tolerant quantum computing crcnetbase an introduction to quantum error correction and fault quantum error correction and fault tolerant quantum computing fault tolerance in quantum computation eceu fault-tolerant quantum computation world scientific fault -tolerant quantum computation versus realistic noise quantum error correction and fault-...
متن کاملFault-tolerant quantum computation with high threshold in two dimensions.
We present a scheme of fault-tolerant quantum computation for a local architecture in two spatial dimensions. The error threshold is 0.75% for each source in an error model with preparation, gate, storage, and measurement errors.
متن کاملFault-Tolerant Quantum Computation with Local Gates
I discuss how to perform fault-tolerant quantum computation with concatenated codes using local gates in small numbers of dimensions. I show that a threshold result still exists in three, two, or one dimensions when next-to-nearest-neighbor gates are available, and present explicit constructions. In two or three dimensions, I also show how nearestneighbor gates can give a threshold result. In a...
متن کامل