Nonparametric Bayesian Sparse Factor Models with application to Gene Expression modelling
نویسندگان
چکیده
A nonparametric Bayesian extension of Factor Analysis (FA) is proposed where observed data Y is modeled as a linear superposition, G, of a potentially infinite number of hidden factors, X. The Indian Buffet Process (IBP) is used as a prior on G to incorporate sparsity and to allow the number of latent features to be inferred. The model’s utility for modeling gene expression data is investigated using randomly generated datasets based on a known sparse connectivity matrix for E. Coli, and on three biological datasets of increasing complexity.
منابع مشابه
Nonparametric Bayesian sparse factor models with application to gene expression modeling
A nonparametric Bayesian extension of Factor Analysis (FA) is proposed where observed data Y is modeled as a linear superposition, G, of a potentially infinite number of hidden factors, X. The Indian Buffet Process (IBP) is used as a prior on G to incorporate sparsity and to allow the number of latent features to be inferred. The model’s utility for modeling gene expression data is investigated...
متن کاملBFRM: Software for Bayesian Factor Regression Models
BFRM is a comprehensive implementation of sparse statistical models for high-dimensional data analysis, structure discovery and prediction. The framework of sparse latent factor modelling coupled with sparse regression and ANOVA for multivariate data is relevant in many exploratory and predictive problems with high-dimensional multivariate observations. Bayesian analysis utilising sparsity-indu...
متن کاملSparse Statistical Modelling in Gene Expression Genomics
The concept of sparsity is more and more central to practical data analysis and inference with increasingly high-dimensional data. Gene expression genomics is a key example context. As part of a series of projects that has developed Bayesian methodology for large-scale regression, ANOVA and latent factor models, we have extended traditional Bayesian “variable selection” priors and modelling ide...
متن کاملA Bayesian Framework for Learning Shared and Individual Subspaces from Multiple Data Sources
space learning for multi-view data: a large margin approach .WIDE: A real-world web image database from national university of singapore. sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables. A choice model with infinitely many latent features. [6] T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. nonparametric join...
متن کاملEfficient Nonparametric Bayesian Modelling with Sparse Gaussian Process Approximations
Sparse approximations to Bayesian inference for nonparametric Gaussian Process models scale linearly in the number of training points, allowing for the application of powerful kernel-based models to large datasets. We present a general framework based on the informative vector machine (IVM) (Lawrence et al., 2003) and show how the complete Bayesian task of inference and learning of free hyperpa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1011.6293 شماره
صفحات -
تاریخ انتشار 2010