Mechanotransduction as an Adaptation to Gravity
نویسندگان
چکیده
Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression.
منابع مشابه
Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change.
Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats expos...
متن کاملCell mechanotransduction: cytoskeleton and related signaling pathways
Mechanical stimuli regulate a variety of cell physiological functions including gene induction, protein synthesis, proliferation and/or differentiation; understanding mechanotransduction at the cellular level is key to understanding basic biology. Here on Earth, signal transduction affects a wide array of receptors and ligands that signal induction of gene expression. The most common signaling ...
متن کاملTransduction and adaptation in sensory hair cells of the mammalian vestibular system.
The human vestibular apparatus detects head movements and gravitational stimuli which impinge upon the mechanosensory hair cells of the inner ear. The hair cells, in turn, transduce these stimuli into electrical signals which are transmitted to the brain. These sensory cells are exquisitely responsive, signaling deflections of their mechanosensitive organelles as small as 1-2 nanometers. Remark...
متن کاملMechanotransduction by Hair Cells: Models, Molecules, and Mechanisms
Mechanotransduction, the transformation of mechanical force into an electrical signal, allows living organisms to hear, register movement and gravity, detect touch, and sense changes in cell volume and shape. Hair cells in the inner ear are specialized mechanoreceptor cells that detect sound and head movement. The mechanotransduction machinery of hair cells is extraordinarily sensitive and resp...
متن کاملSpace, gravity and the physiology of aging: parallel or convergent disciplines? A mini-review.
The abnormal physiology that manifests itself in healthy humans during their adaptation to the microgravity of space has all the features of accelerated aging. The mechano-skeletal and vestibulo-neuromuscular stimuli which are below threshold in space, result in an overall greater than 10-fold more rapid onset and time course of muscle and bone atrophy in space and the development of balance an...
متن کامل