Boosting

نویسنده

  • Zhi-Hua Zhou
چکیده

Boosting is a kind of ensemble methods which produce a strong learner that is capable of making very accurate predictions by combining rough and moderately inaccurate learners (which are called as base learners or weak learners). In particular, Boosting sequentially trains a series of base learners by using a base learning algorithm, where the training examples wrongly predicted by a base learner will receive more attention from the successive base learner; after that, it generates a final strong learner through a weighted combination of these base learners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارزیابی عملکرد روش‌هایBoosting و بیز A در چالش‌های مختلف معماری ژنومی صفات گسسته و پیوسته

سابقه و هدف: گزینش ژنومی چالشی امید بخش برای کشف رموز ژنتیکی صفات کمی و کیفی به ‌منظور بهبود رشد ژنتیکی و صحت پیش ‌بینی ژنومی در اصلاح دام می‌باشد .در این پژوهش، عملکرد روش‌های ‌Boosting و بیز A در برآورد ارزش‌های اصلاحی ژنومی صفات آستانه‌ای دودویی و پیوسته در تراکم مختلف نشانگری با استفاده از معماری‌های مختلف ژنومی مورد بررسی قرار گرفت. مواد و روش‌ها: داده‌های ژنومی از طریق نرم افزار QMSim با ...

متن کامل

Outlier Detection by Boosting Regression Trees

A procedure for detecting outliers in regression problems is proposed. It is based on information provided by boosting regression trees. The key idea is to select the most frequently resampled observation along the boosting iterations and reiterate after removing it. The selection criterion is based on Tchebychev’s inequality applied to the maximum over the boosting iterations of ...

متن کامل

A Brief Introduction to Boosting

Boosting is a general method for improving the accuracy of any given learning algorithm. This short paper introduces the boosting algorithm AdaBoost, and explains the underlying theory of boosting, including an explanation of why boosting often does not suffer from overfitting. Some examples of recent applications of boosting are also described.

متن کامل

Calibrated Boosting-Forest

Excellent ranking power along with well calibrated probability estimates are needed in many classification tasks. In this paper, we introduce a technique, Calibrated Boosting-Forest1 that captures both. This novel technique is an ensemble of gradient boosting machines that can support both continuous and binary labels. While offering superior ranking power over any individual regression or clas...

متن کامل

Evaluation of Data Mining Algorithms for Detection of Liver Disease

Background and Aim: The liver, as one of the largest internal organs in the body, is responsible for many vital functions including purifying and purifying blood, regulating the body's hormones, preserving glucose, and the body. Therefore, disruptions in the functioning of these problems will sometimes be irreparable. Early prediction of these diseases will help their early and effective treatm...

متن کامل

Robust Boosting via Convex Optimization: Theory and Applications

In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules – also called base hypotheses. The so-called boosting algorithms iteratively find...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009