Pacemaker mechanism of porcine sino-atrial node cells.

نویسندگان

  • Kyoichi Ono
  • Shigehiro Shibata
  • Toshihiko Iijima
چکیده

In cardiac sino-atrial node (SAN) cells, time- and voltage-dependent changes in the gating of various ionic currents provide spontaneous, stable and repetitive firing of action potentials. To address the ionic nature of the species-dependent heart rate, action potentials and membrane currents were recorded in single cells dissociated from the porcine SAN, and compared with those from SAN cells of rabbits, guinea-pigs and mice. The porcine SAN cells exhibited spontaneous activity with a frequency of 60-80 min(-1), which was much slower than that of rabbit SAN cells. Under voltage clamp conditions, depolarization activated the L-type Ca2+ current (I(CaL)) followed by a gradual activation of the delayed rectifier K+ current (I(K)) while hyperpolarization activated the hyperpolarization-activated cation current (I(h)). It was found that the major component of I(K) in porcine SAN is the slowly activating I(K) (I(Ks)), in contrast to SAN cells of the rabbit and other species in which the rapid I(K) (I(Kr)) plays an active role in repolarization and the subsequent pacemaker depolarization. Replacement of rabbit I(Kr) with porcine I(Ks) and a slight modification in the gating parameters and amplitudes of other current systems in the 'Kyoto Model' gave an adequate reconstruction of spontaneous action potentials as well as of the voltage clamp recordings. We conclude that the density and the kinetics of I(K) contribute, in part, to the different heart rates of various species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیــر نیکــل بر مسدود کردن جریان یونــی گذرای کلسیمــی سلولهای گــره سینوسی ـ دهلیزی دست نخورده و سالم قلب خرگوش

The mammalian sino-atrial node is not a uniform tissue in histological and electrophysiological terms. The differences in ionic currents underlying the regional differences in electrial activity are only just beginning to be understood. One of the ionic currents it is thought to play a role in the center of sino-atrial node for action potential upstroke should be transient Ca+2 current ...

متن کامل

Comparison of Hyperpolarization-Activiated Current “if ” on the Rate of Spontaneous Activity and Cycle Length before and after Cutting of Atrial Muscle away from Intact Sinoatrial Node of Rabbit

It has been shown that the hyperpolarization-activated current “if” that is blocked by 2 mM Cs+ plays a minor role on pacemaker activity of the center and a major role on activity of the periphery of rabbit intact sino-atrial node. On the other hand some investigations showed that if the atrial muscle, surrounding the sino-atrial node, is cut away there is a shift in leading pacemaker site from...

متن کامل

Inhibition by genistein of the hyperpolarization-activated cation current in porcine sino-atrial node cells.

1 The hyperpolarization-activated cation current (If) was recorded in single pacemaker cells of the porcine sino-atrial node, and the effects of genistein, an isoflavone inhibitor of tyrosine-specific protein kinases was investigated by the whole-cell patch clamp technique. 2 Genistein (20-500 microM) decreased If in a dose-dependent manner with an IC50 value of 62.3 microM and a maximum inhibi...

متن کامل

Influence of calcium and magnesium ions on the sino-atrial node pacemaker activity of the canine heart.

HASHIMOTO , K., SUZUKI, Y. and CHIBA, S. Influence of Calcium and Magne sium Ions on the Sino-atrial Node Pacemaker Activity of the Canine Heart. Tohoku J. exp. Med., 1974, 113 (2), 187-196 •\ Using constant pressure perfusion technique of the canine sinus node artery, effects of changing concentrations of calcium and magnesium ions were investigated on the sino-atrial (SA) pacemaker activity. ...

متن کامل

Sino-atrial nodal cells of mammalian hearts: ionic currents and gene expression of pacemaker ionic channels.

The cardiac pacemaker is a sino-atrial (SA) nodal cell. The signal induced by this pacemaker is distributed over the heart surface by a specialised conduction system and is clinically recorded as the ECG. The SA nodal cells are highly resistant to cardiac failure and ischemia. Under calcium overload conditions, some dysrythmias of SA nodal cells occur easily. Morphological analysis under these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2003