Dietary copper deficiency reduces iron absorption and duodenal enterocyte hephaestin protein in male and female rats.

نویسندگان

  • Philip G Reeves
  • Lana C S Demars
  • W Thomas Johnson
  • Henry C Lukaski
چکیده

The mechanism for reduced Fe absorption in Cu deficiency is unknown, but may involve the intestinal Cu-dependent ferroxidase, Hephaestin (Hp). A 2 x 2 factorial experiment was designed to include Cu-deficient (CuD) and Cu-adequate (CuA) male and female rats. Weanling rats of both sexes were randomly divided into 2 groups each and fed an AIN-93G diet with low (<0.3 mg/kg; CuD) or adequate Cu (5.0 mg/kg; CuA). After 19 d, rats were fed 1.0 g each of their respective diets labeled with (59)Fe. Retained (59)Fe was monitored by whole-body counting for 12 d. Then, rats were killed for (59)Fe and Fe measurements in blood and various organs. Duodenal enterocytes were isolated for Western blot analysis of Hp. Signs of Cu and Fe deficiency were evident in both sexes. CuD male rats absorbed 60% as much Fe as CuA male rats (P < 0.001), whereas CuD female rats absorbed 70% (P < 0.001) as much as CuA females, with no difference between the sexes. Hp protein in enterocytes of CuD rats of both sexes was only 35% of that in CuA rats. The biological half-life of (59)Fe in CuD rats was only 50% (P < 0.001) of that in CuA rats, suggesting that Fe turnover was faster in CuD rats than CuA rats. Serum, spleen, and kidney Fe were lower (P < 0.001) in CuD rats than in CuA rats. Duodenal mucosa and liver Fe were higher (P < 0.01) in CuD male rats than CuA rats. Duodenal Fe but not liver Fe was higher in CuD female rats than CuA rats. Liver Fe was much higher (<0.001) overall in females than males. The data suggest that Cu deficiency reduces Fe absorption in rats through reduced expression of duodenal Hp protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Repletion of copper-deficient rats with dietary copper restores duodenal hephaestin protein and iron absorption.

Copper (Cu) deficiency in rats reduces the relative concentration of duodenal hephaestin (Hp), reduces iron (Fe) absorption, and causes anemia. An experiment was conducted to determine whether these effects could be reversed by dietary Cu repletion. Five groups of eight weanling male rats each were used. Group 1 was fed a Cu-adequate diet (5.0 mg Cu/kg; CuA) and Group 2 was fed a Cu-deficient d...

متن کامل

Copper deficiency increases iron absorption in the rat.

Release of iron from enterocytes and hepatocytes is thought to require the copper-dependent ferroxidase activity of hephaestin (Hp) and ceruloplasmin (Cp), respectively. In swine, copper deficiency (CD) impairs iron absorption, but whether this occurs in rats is unclear. By feeding a diet deficient in copper, CD was produced, as evidenced by the loss of copper-dependent plasma ferroxidase I act...

متن کامل

Investigation of Iron Metabolism in Mice Expressing a Mutant Menke’s Copper Transporting ATPase (Atp7a) Protein with Diminished Activity (Brindled; MoBr/y)

During iron deficiency, perturbations in copper homeostasis have frequently been documented. Previous studies in iron-deprived rats demonstrated that enterocyte and hepatic copper levels increase and a copper transporter (the Menkes Copper ATPase; Atp7a) is induced in the duodenal epithelium in parallel to iron transport-related genes (e.g. Dmt1, Dcytb, Fpn1). Moreover, two ferroxidase proteins...

متن کامل

SMALL INTESTINE A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption

Background: A large oral dose of iron will reduce the absorption of a subsequent smaller dose of iron in a phenomenon known as mucosal block. Molecular analysis of this process may provide insights into the regulation of intestinal iron absorption. Aims: To determine the effect of an oral bolus of iron on duodenal expression of molecules associated with intestinal iron transport in rats and to ...

متن کامل

A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption.

BACKGROUND A large oral dose of iron will reduce the absorption of a subsequent smaller dose of iron in a phenomenon known as mucosal block. Molecular analysis of this process may provide insights into the regulation of intestinal iron absorption. AIMS To determine the effect of an oral bolus of iron on duodenal expression of molecules associated with intestinal iron transport in rats and to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of nutrition

دوره 135 1  شماره 

صفحات  -

تاریخ انتشار 2005