Unified QLM for regular and arbitrary singular potentials
نویسنده
چکیده
منابع مشابه
Infinite Energy Solutions for the Cahn-hilliard Equation in Cylindrical Domains
We give a detailed study of the infinite-energy solutions of the Cahn-Hilliard equation in the 3D cylindrical domains in uniformly local phase space. In particular, we establish the well-posedness and dissipativity for the case of regular potentials of arbitrary polynomial growth as well as for the case of sufficiently strong singular potentials. For these cases, we prove the further regularity...
متن کاملFeature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition
Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملRegular, pseudo-regular, and almost regular matrices
We give lower bounds on the largest singular value of arbitrary matrices, some of which are asymptotically tight for almost all matrices. To study when these bounds are exact, we introduce several combinatorial concepts. In particular, we introduce regular, pseudo-regular, and almost regular matrices. Nonnegative, symmetric, almost regular matrices were studied earlier by Ho¤man, Wolfe, and Ho¤...
متن کاملM ar 2 00 7 Regular , pseudo - regular , and almost regular matrices
We give lower bounds on the largest singular value of arbitrary matrices, some of which are asymptotically tight for almost all matrices. To study when these bounds are exact, we introduce several combinatorial concepts. In particular, we introduce regular, pseudo-regular, and almost regular matrices. Nonnegative, symmetric, almost regular matrices were studied earlier by Hoffman, Wolfe, and Ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 246 شماره
صفحات -
تاریخ انتشار 2014