A Proximal Approach for Sparse Multiclass SVM

نویسندگان

  • Giovanni Chierchia
  • Nelly Pustelnik
  • Jean-Christophe Pesquet
  • Béatrice Pesquet-Popescu
چکیده

Sparsity-inducing penalties are useful tools to design multiclass support vector machines (SVMs). In this paper, we propose a convex optimization approach for efficiently and exactly solving the multiclass SVM learning problem involving a sparse regularization and the multiclass hinge loss formulated by [1]. We provide two algorithms: the first one dealing with the hinge loss as a penalty term, and the other one addressing the case when the hinge loss is enforced through a constraint. The related convex optimization problems can be efficiently solved thanks to the flexibility offered by recent primal-dual proximal algorithms and epigraphical splitting techniques. Experiments carried out on several datasets demonstrate the interest of considering the exact expression of the hinge loss rather than a smooth approximation. The efficiency of the proposed algorithms w.r.t. several state-of-the-art methods is also assessed through comparisons of execution times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Approach Multiclass SVM For Vowels Recognition

In this paper we present and investigate the performance of a simple framework for multiclass problems of support vector machine (SVM), we present a new approach named EAMSVM (Efficient Approach Multiclass SVM), in order to achieve high classification efficiency for multiclass problems. The proposed paradigm builds a binary tree for multiclass SVM by genetic algorithms with the aim of obtaining...

متن کامل

Fast Image Classification with Reduced Multiclass Support Vector Machines

Image classification is intrinsically a multiclass, nonlinear classification task. Support Vector Machines (SVMs) have been successfully exploited to tackle this problem, using one-vs-one or one-vs-all learning schemes to enable multiclass classification, and kernels designed for image classification to handle nonlinearities. To classify an image at test time, an SVM requires matching it agains...

متن کامل

Support Vector Machine for Multiclass Handwritten Digits

In our research paper, we have implemented Multiclass Classification using Support Vector Machine (SVM). Pen Digit Recognition of Handwritten digit dataset is used for the purpose. One vs All approach has been applied using SVM to achieve multiclass classification. The same approach with different kernels has been analysed to select the right kernel. In this paper, we have found that selection ...

متن کامل

Performance Analysis of Multiclass Support Vector Machine Classification for Diagnosis of Coronary Heart Diseases

Automatic diagnosis of coronary heart disease helps the doctor to support in decision making a diagnosis. Coronary heart disease have some types or levels. Referring to the UCI Repository dataset, it divided into 4 types or levels that are labeled numbers 1-4 (low, medium, high and serious). The diagnosis models can be analyzed with multiclass classification approach. One of multiclass classifi...

متن کامل

Which Is the Best Multiclass SVM Method? An Empirical Study

Multiclass SVMs are usually implemented by combining several two-class SVMs. The one-versus-all method using winner-takes-all strategy and the one-versus-one method implemented by max-wins voting are popularly used for this purpose. In this paper we give empirical evidence to show that these methods are inferior to another one-versusone method: one that uses Platt’s posterior probabilities toge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1501.03669  شماره 

صفحات  -

تاریخ انتشار 2015