SPECTRUM AND COMPACTNESS OF THE CESÀRO OPERATOR ON WEIGHTED ` p SPACES

نویسنده

  • W. J. Ricker
چکیده

An investigation is made of the continuity, the compactness and the spectrum of the Cesàro operator C when acting on the weighted Banach sequence spaces `p(w), 1 < p <∞, for a positive, decreasing weight w, thereby extending known results for C when acting on the classical spaces `p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Li-Stević Integral-Type Operators between Different Weighted Bloch-Type Spaces

First, we introduce some basic notation which is used in this paper. Throughout the entire paper, the unit disk in the finite complex plane C will be denoted by D. H D will denote the space of all analytic functions on D. Every analytic self-map φ of the unit disk D induces through composition a linear composition operator Cφ fromH D to itself. It is a well-known consequence of Littlewood’s sub...

متن کامل

Spectral analysis of transport equations with bounce-back boundary conditions

We investigate the spectral properties of the time-dependent linear transport equation with bounce-back boundary conditions. A fine analysis of the spectrum of the streaming operator is given and the explicit expression of the strongly continuous streaming semigroup is derived. Next, making use of a recent result from [1], we prove, via a compactness argument, that the essential spectrum of the...

متن کامل

Amd-numbers, Compactness, Strict Singularity and the Essential Spectrum of Operators

For an operator T acting from an infinite-dimensional Hilbert space H to a normed space Y we define the upper AMD-number δ(T ) and the lower AMD-number δ(T ) as the upper and the lower limit of the net (δ(T |E))E∈FD(H) , with respect to the family FD(H) of all finite-dimensional subspaces of H. When these numbers are equal, the operator is called AMDregular. It is shown that if an operator T is...

متن کامل

Inverse Eigenvalue Problems on Directed Graphs

The differential operators iD and −D2 − p are constructed on certain finite directed weighted graphs. Two types of inverse spectral problems are considered. First, information about the graph weights and boundary conditions is extracted from the spectrum of −D2. Second, the compactness of isospectral sets for −D2 − p is established by computation of the residues of the zeta function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014