Malonyl CoenzymeA decarboxylase regulates lipid and glucose metabolism in human skeletal muscle.

نویسندگان

  • Karim Bouzakri
  • Reginald Austin
  • Anna Rune
  • Michael E Lassman
  • Pablo M Garcia-Roves
  • Joel P Berger
  • Anna Krook
  • Alexander V Chibalin
  • Bei B Zhang
  • Juleen R Zierath
چکیده

OBJECTIVE Malonyl coenzyme A (CoA) decarboxylase (MCD) is a key enzyme responsible for malonyl-CoA turnover and functions in the control of the balance between lipid and glucose metabolism. We utilized RNA interference (siRNA)-based gene silencing to determine the direct role of MCD on metabolic responses in primary human skeletal muscle. RESEARCH DESIGN AND METHODS We used siRNA to silence MCD gene expression in cultured human myotubes from healthy volunteers (seven male and seven female) with no known metabolic disorders. Thereafter, we determined lipid and glucose metabolism and signal transduction under basal and insulin-stimulated conditions. RESULTS RNA interference-based silencing of MCD expression (75% reduction) increased malonyl-CoA levels twofold and shifted substrate utilization from lipid to glucose oxidation. RNA interference-based depletion of MCD reduced basal palmitate oxidation. In parallel with this reduction, palmitate uptake was decreased under basal (40%) and insulin-stimulated (49%) conditions compared with myotubes transfected with a scrambled sequence. MCD silencing increased basal and insulin-mediated glucose oxidation 1.4- and 2.6-fold, respectively, compared with myotubes transfected with a scrambled sequence. In addition, glucose transport and cell-surface GLUT4 content was increased. In contrast, insulin action on IRS-1 tyrosine phosphorylation, tyrosine-associated phosphatidylinositol (PI) 3-kinase activity, Akt, and glycogen synthase kinase (GSK) phosphorylation was unaltered between myotubes transfected with siRNA against MCD versus a scrambled sequence. CONCLUSIONS These results provide evidence that MCD silencing suppresses lipid uptake and enhances glucose uptake in primary human myotubes. In conclusion, MCD expression plays a key reciprocal role in the balance between lipid and glucose metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIRT4 controls the balance between lipid synthesis and catabolism by repressing malonyl-CoA decarboxylase

Lipid metabolism is highly controlled by the nutritional state of the organism. In this study, we identify the mitochondrial sirtuin, SIRT4, as a critical regulator of lipid homeostasis. We find that SIRT4 represses fatty acid oxidation while promoting lipid anabolism. Mechanistically, SIRT4 regulates this balance by inhibiting malonyl-CoA decarboxylase (MCD), an enzyme that produces acetylCoA ...

متن کامل

Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance.

Previous studies have suggested that insulin resistance develops secondary to diminished fat oxidation and resultant accumulation of cytosolic lipid molecules that impair insulin signaling. Contrary to this model, the present study used targeted metabolomics to find that obesity-related insulin resistance in skeletal muscle is characterized by excessive beta-oxidation, impaired switching to car...

متن کامل

Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects.

Increased accumulation of fatty acids and their derivatives can impair insulin-stimulated glucose disposal by skeletal muscle. To characterize the nature of the defects in lipid metabolism and to evaluate the effects of thiazolidinedione treatment, we analyzed the levels of triacylglycerol, long-chain fatty acyl-coA, malonyl-CoA, fatty acid oxidation, AMP-activated protein kinase (AMPK), acetyl...

متن کامل

Regulation of cardiac and skeletal muscle malonyl-CoA decarboxylase by fatty acids.

Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malonyl-CoA, an important modulator of fatty acid oxidation. We hypothesized that increased fatty acid availability would increase the expression and activity of heart and skeletal muscle MCD, thereby promoting fatty acid utilization. The results show that high-fat feeding, fasting, and streptozotocin-induced diabetes all significantl...

متن کامل

Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates.

Nitric oxide (NO) is synthesized from L-arginine by NO synthase in virtually all cell types. Emerging evidence shows that NO regulates the metabolism of glucose, fatty acids and amino acids in mammals. As an oxidant, pathological levels of NO inhibit nearly all enzyme-catalyzed reactions through protein oxidation. However, as a signaling molecule, physiological levels of NO stimulate glucose up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 57 6  شماره 

صفحات  -

تاریخ انتشار 2008