Conditional symmetries for ordinary differential equations and applications

نویسندگان

  • A Fatima
  • F. M. Mahomed
چکیده

We refine the definition of conditional symmetries of ordinary differential equations and provide an algorithm to compute such symmetries. A proposition is proved which provides criteria as to when the symmetries of the root system of ODEs are inherited by the derived higher-order system. We provide examples and then investigate the conditional symmetry properties of linear nth-order equations subject to root linear second-order equations. First this is considered for simple linear equations and then for arbitrary linear systems. We prove criteria when the symmetries of the root linear ODEs are inherited by the derived scalar linear ODEs and even order linear system of ODEs. Furthermore, we show that if a system of ODEs has exact solutions, then it admits a conditional symmetry subject to the firstorder ODEs related to the invariant curve conditions which arises from the known solution curves. Moreover, we give examples of the conditional symmetries of non-linear third-order equations which are linearizable by second-order Lie linearizable equations. Applications to classical and fluid mechanics are presented. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

Higher Conditional Symmetries and Reduction of Initial Value Problems for Nonlinear Evolution Equations

We prove that the presence of higher conditional symmetry is the necessary and sufficient condition for reduction of an arbitrary evolution equation in two variables to a system of ordinary differential equations. Furthermore, we give the sufficient condition for an initial value problem for an evolution equation to be reducible to a Cauchy problem for a system of ordinary differential equation...

متن کامل

Reduction Operators of Linear Second-Order Parabolic Equations

The reduction operators, i.e., the operators of nonclassical (conditional) symmetry, of (1 + 1)dimensional second order linear parabolic partial differential equations and all the possible reductions of these equations to ordinary differential ones are exhaustively described. This problem proves to be equivalent, in some sense, to solving the initial equations. The “no-go” result is extended to...

متن کامل

A Necessary Condition for existence of Lie Symmetries in Quasihomogeneous Systems of Ordinary Differential Equations

Lie symmetries for ordinary differential equations are studied. In systems of ordinary differential equations, there do not always exist non-trivial Lie symmetries around equilibrium points. We present a necessary condition for existence of Lie symmetries analytic in the neighbourhood of an equilibrium point. In addition, this result can be applied to a necessary condition for existence of a Li...

متن کامل

A Diffusion Equation with Exponential Nonlinearity Recant Developments

The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014