Antimicrobial mechanism of resveratrol-trans-dihydrodimer produced from peroxidase-catalyzed oxidation of resveratrol.
نویسندگان
چکیده
Plant polyphenols are known to have varying antimicrobial potencies, including direct antibacterial activity, synergism with antibiotics and suppression of bacterial virulence. We performed the in vitro oligomerization of resveratrol catalyzed by soybean peroxidase, and the two isomers (resveratrol-trans-dihydrodimer and pallidol) produced were tested for antimicrobial activity. The resveratrol-trans-dihydrodimer displayed antimicrobial activity against the Gram-positive bacteria Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus (minimum inhibitory concentration (MIC) = 15.0, 125, and 62.0 μM, respectively) and against Gram-negative Escherichia coli (MIC = 123 μM, upon addition of the efflux pump inhibitor Phe-Arg-β-naphthylamide). In contrast, pallidol had no observable antimicrobial activity against all tested strains. Transcriptomic analysis implied downregulation of ABC transporters, genes involved in cell division and DNA binding proteins. Flow cytometric analysis of treated cells revealed a rapid collapse in membrane potential and a substantial decrease in total DNA content. The active dimer showed >90% inhibition of DNA gyrase activity, in vitro, by blocking the ATP binding site of the enzyme. We thus propose that the resveratrol-trans-dihydrodimer acts to: (1) disrupt membrane potential; and (2) inhibit DNA synthesis. In summary, we introduce the mechanisms of action and the initial evaluation of an active bactericide, and a platform for the development of polyphenolic antimicrobials.
منابع مشابه
Generation of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3.
In recent studies, the wild-type and mutant forms of cytochrome P450 (P450) BM3 (CYP102A1) from Bacillus megaterium were found to metabolize various drugs through reactions similar to those catalyzed by human P450 enzymes. Therefore, it was suggested that CYP102A1 can be used to produce large quantities of the metabolites of human P450-catalyzed reactions. trans-Resveratrol (3,4',5-trihydroxyst...
متن کاملBiomimetic Synthesis of Resveratrol Trimers Catalyzed by Horseradish Peroxidase.
Biotransformation of trans-resveratrol and synthetic (±)-ε-viniferin in aqueous acetone using horseradish peroxidase and hydrogen peroxide as oxidants resulted in the isolation of two new resveratrol trimers (3 and 4), one new resveratrol derivative (5) with a dihydrobenzofuran skeleton, together with two known stilbene trimers (6 and 7), and six known stilbene dimers (8-13). Their structures a...
متن کاملInhibition of Oxidative and Antioxidative Enzymes by Trans-Resveratrol
Trans-resveratrol, a phytoalexin produced by a variety of plants, has been shown to inhibit oxidative enzymes in an animal cell system. Its effect on several oxidative and antioxidative enzymes from plants was investigated using in vitro assays. Trans-resveratrol inhibited superoxide dismutase, lipoxygenase, catalase, peroxidase, polyphenol oxidase, and 1-aminocyclopropane-1-carboxylic acid oxi...
متن کاملDifferential inhibition and inactivation of human CYP1 enzymes by trans-resveratrol: evidence for mechanism-based inactivation of CYP1A2.
trans-Resveratrol (3,5,4'-trihydroxy-trans-stilbene) has been reported to confer chemoprotection against 7,12-dimethylbenz[a]anthracene (DMBA)-induced carcinogenicity in a murine model. A potential mechanism for this effect by trans-resveratrol is inhibition of DMBA-bioactivating cytochrome P450 (CYP) enzymes such as CYP1B1, CYP1A1, and CYP1A2. In the present study, we examined in detail the in...
متن کاملShort Communication Generation of the Human Metabolite Piceatannol from the Anticancer-Preventive Agent Resveratrol by Bacterial Cytochrome P450 BM3
In recent studies, the wild-type and mutant forms of cytochrome P450 (P450) BM3 (CYP102A1) from Bacillus megaterium were found to metabolize various drugs through reactions similar to those catalyzed by human P450 enzymes. Therefore, it was suggested that CYP102A1 can be used to produce large quantities of the metabolites of human P450-catalyzed reactions. trans-Resveratrol (3,4 ,5-trihydroxyst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 112 12 شماره
صفحات -
تاریخ انتشار 2015