mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance

نویسندگان

  • Laura Garros-Regulez
  • Paula Aldaz
  • Olatz Arrizabalaga
  • Veronica Moncho-Amor
  • Estefania Carrasco-Garcia
  • Lorea Manterola
  • Leire Moreno-Cugnon
  • Cristina Barrena
  • Jorge Villanua
  • Irune Ruiz
  • Steven Pollard
  • Robin Lovell-Badge
  • Nicolas Sampron
  • Idoia Garcia
  • Ander Matheu
چکیده

BACKGROUND SOX2 and SOX9 are commonly overexpressed in glioblastoma, and regulate the activity of glioma stem cells (GSCs). Their specific and overlapping roles in GSCs and glioma treatment remain unclear. METHODS SOX2 and SOX9 levels were examined in human biopsies. Gain and loss of function determined the impact of altering SOX2 and SOX9 on cell proliferation, senescence, stem cell activity, tumorigenesis and chemoresistance. RESULTS SOX2 and SOX9 expression correlates positively in glioma cells and glioblastoma biopsies. High levels of SOX2 bypass cellular senescence and promote resistance to temozolomide. Mechanistic investigations revealed that SOX2 acts upstream of SOX9. mTOR genetic and pharmacologic (rapamycin) inhibition decreased SOX2 and SOX9 expression, and reversed chemoresistance. CONCLUSIONS Our findings reveal SOX2-SOX9 as an oncogenic axis that regulates stem cell properties and chemoresistance. We identify that rapamycin abrogate SOX protein expression and provide evidence that a combination of rapamycin and temozolomide inhibits tumor growth in cells with high SOX2/SOX9.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOX9-PDK1 axis is essential for glioma stem cell self-renewal and temozolomide resistance

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with limited therapeutic options. Glioma stem cell (GSC) is thought to be greatly responsible for glioma tumor progression and drug resistance. But the molecular mechanisms of GSC deriving recurrence and drug resistance are still unclear. SOX9 (sex-determining region Y (SRY)-box9 protein), a transcription factor express...

متن کامل

NOTCH blockade combined with radiation therapy and temozolomide prolongs survival of orthotopic glioblastoma

Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. The current standard of care includes surgery followed by radiotherapy (RT) and chemotherapy with temozolomide (TMZ). Treatment often fails due to the radiation resistance and intrinsic or acquired TMZ resistance of a small percentage of cells with stem cell-like behavior (CSC). The NOTCH signaling pathway is expr...

متن کامل

Estrogen receptor β agonist enhances temozolomide sensitivity of glioma cells by inhibiting PI3K/AKT/mTOR pathway.

Glioma is the most common primary brain tumor among adults. Temozolomide (TMZ) is widely used as the first‑line postsurgical drug for malignant glioma. However, the therapeutic efficacy of TMZ remains ineffective as inherited or acquired drug resistance is frequently observed. Estrogen receptor β (ERβ) has emerged as a tumor suppressor and a key regulator of signal transduction in glioma cells....

متن کامل

A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide

Glioblastoma is the most malignant brain tumor, exhibiting remarkable resistance to treatment. Here we investigated the oncogenic potential of HOXA9 in gliomagenesis, the molecular and cellular mechanisms by which HOXA9 renders glioblastoma more aggressive, and how HOXA9 affects response to chemotherapy and survival. The prognostic value of HOXA9 in glioblastoma patients was validated in two la...

متن کامل

Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells.

Glioblastoma is the most common and most aggressive brain tumor in adults. The introduction of temozolomide (TMZ) has advanced chemotherapy for malignant gliomas, but it is not curative. The difficulties in treating glioblastoma may be as a result of the presence of glioma stem cells (GSCs), which are a source of relapse and chemoresistance. Another reason may be that endogenous Akt kinase acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2016