Identification of Nonlinear Processes with Known Model Structure under Missing Observations
نویسنده
چکیده
A novel maximum likelihood solution to the problem of identifying parameters of a nonlinear model under missing observations is presented. An expectation maximization (EM) algorithm, which uses the expected value of the complete log-likelihood function including the missing observations, is developed. The expected value of the complete log-likelihood (E-step) in the EM algorithm is approximated using particle filters and smoothers. New expressions for particle filters and smoothers under missing observations are derived. The maximization step (M-step) in the EM algorithm is performed using standard optimization routines. The above nonlinear identification approach is illustrated through numerical examples.
منابع مشابه
Particle Filter Approach to Nonlinear System Identification under Missing Observations with a Real Application
This article reviews authors’ recently developed algorithm for identification of nonlinear state-space models under missing observations and extends it to the case of unknown model structure. In order to estimate the parameters in a state-space model, one needs to know the model structure and have an estimate of states. If the model structure is unknown, an approximation of it is obtained using...
متن کاملParticle Filter Approach to Nonlinear System Identification under Missing Observations with a Real Application, Report no. LiTH-ISY-R-2895
This article reviews authors' recently developed algorithm for identi cation of nonlinear state-space models under missing observations and extends it to the case of unknown model structure. In order to estimate the parameters in a state-space model, one needs to know the model structure and have an estimate of states. If the model structure is unknown, an approximation of it is obtained using ...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملMonitoring the censored lognormal reliability data in a three-stage process using AFT model
Improving the product reliability is the main concern in both manufacturing and service processes which is obtained by monitoring the reliability-related quality characteristics. Nowadays, products or services are the result of processes with dependent stages referred to as multistage processes. In these processes, the quality characteristic in each stage is affected by the quality characterist...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کامل