Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations.

نویسندگان

  • T V Wuttke
  • K Jurkat-Rott
  • W Paulus
  • M Garncarek
  • F Lehmann-Horn
  • H Lerche
چکیده

BACKGROUND Peripheral nerve hyperexcitability (PNH) is characterized by muscle overactivity due to spontaneous discharges of lower motor neurons usually associated with antibodies against voltage-gated potassium channels. PNH may also occur in combination with episodic ataxia or epilepsy caused by mutations in K(V)1.1 or K(V)7.2 channels. Only one PNH-associated mutation has been described so far in K(V)7.2 (R207W), in a family with both PNH and neonatal seizures. METHODS PNH was characterized by video and electromyography. The KCNQ2 gene was sequenced and K(V)7.2 channels were functionally characterized using two-microelectrode voltage-clamping in Xenopus oocytes. RESULTS In a patient with PNH without other neurologic symptoms, we identified a novel KCNQ2 mutation predicting loss of a charged residue within the voltage sensor of K(V)7.2 (R207Q). Functional analysis of both PNH-associated mutants revealed large depolarizing shifts of the conductance-voltage relationships and marked slowing of the activation time course compared to wild type (WT) channels, less pronounced for R207Q than R207W. Co-expression of both mutant with WT channels revealed a dominant negative effect reducing the relative current amplitudes after short depolarizations by >70%. The anticonvulsant retigabine, an activator of neuronal K(V)7 channels, reversed the depolarizing shift. CONCLUSIONS Mutations in KCNQ2 can cause idiopathic PNH alone and should be considered in sporadic cases. Both K(V)7.2 mutants produce PNH by changing voltage-dependent activation with a dominant negative effect on the WT channel. This distinguishes them from all hitherto examined Kv7.2 or K(V)7.3 mutations which cause neonatal seizures by haploinsufficiency. Retigabine may be beneficial in treating PNH.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo loss of slow potassium channel activity in individuals with benign familial neonatal epilepsy in remission.

Benign familial neonatal epilepsy is a neuronal channelopathy most commonly caused by mutations in KCNQ2, which encodes the K(v)7.2 subunit of the slow K(+) channel. K(v)7.2 is expressed in both central and peripheral nervous systems. Seizures occur in the neonatal period, often in clusters within the first few days of life, and usually remit by 12 months of age. The mechanism of involvement of...

متن کامل

Molecular determinants of KCNQ (Kv7) K+ channel sensitivity to the anticonvulsant retigabine.

Epilepsy is caused by an electrical hyperexcitability in the CNS. Because K+ channels are critical for establishing and stabilizing the resting potential of neurons, a loss of K+ channels could support neuronal hyperexcitability. Indeed, benign familial neonatal convulsions, an autosomal dominant epilepsy of infancy, is caused by mutations in KCNQ2 or KCNQ3 K+ channel genes. Because these chann...

متن کامل

Paroxysmal neuromyotonia: A new sporadic channelopathy

Neuromyotonia is a heterogeneous group of genetic and autoimmune channelopathies resulting in hyperexcitability of peripheral nerves. We report an unusual case of neuromyotonia, which to our knowledge has not been previously described. The patient developed intermittent attacks of severe painful muscle stiffness accompanied by sweating, myokymia and raised serum creatine kinase. Genetic analysi...

متن کامل

Made for "anchorin": Kv7.2/7.3 (KCNQ2/KCNQ3) channels and the modulation of neuronal excitability in vertebrate axons.

Kv7.2 and Kv7.3 (encoded by KCNQ2 and KCNQ3) are homologous subunits forming a widely expressed neuronal voltage-gated K(+) (Kv) channel. Hypomorphic mutations in either KCNQ2 or KCNQ3 cause a highly penetrant, though transient, human phenotype-epilepsy during the first months of life. Some KCNQ2 mutations also cause involuntary muscle rippling, or myokymia, which is indicative of motoneuron ax...

متن کامل

Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction.

M utations in the voltage gated potassium channels KCNQ2 (OMIM 602235) and KCNQ3 (OMIM 602232) are associated with an autosomal dominant idiopathic epilepsy syndrome of newborns, benign familial neonatal seizures (BFNS) (OMIM 121200). BFNS is characterised by unprovoked partial seizures typically beginning when the infant is around three days old. BFNS associated genes were mapped to human chro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurology

دوره 69 22  شماره 

صفحات  -

تاریخ انتشار 2007