Online appendix of “Distributionally Robust Optimization and its Tractable Approximations”
نویسندگان
چکیده
منابع مشابه
Conic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls
Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage robust and distributionally robust linear programs can often be reformulated exactly as conic programs that scale polynomially with the problem dim...
متن کاملDistributionally robust chance constraints for non-linear uncertainties
This paper investigates the computational aspects of distributionally robust chance constrained optimization problems. In contrast to previous research that mainly focused on the linear case (with a few exceptions discussed in detail below), we consider the case where the constraints can be non-linear to the decision variable, and in particular to the uncertain parameters. This formulation is o...
متن کاملDistributionally Robust Convex Optimization
Distributionally robust optimization is a paradigm for decision-making under uncertaintywhere the uncertain problem data is governed by a probability distribution that is itself subjectto uncertainty. The distribution is then assumed to belong to an ambiguity set comprising alldistributions that are compatible with the decision maker’s prior information. In this paper,we propose...
متن کاملTractable Distributionally Robust Optimization with Data
We present a unified and tractable framework for distributionally robust optimization that could encompass a variety of statistical information including, among others things, constraints on expectation, conditional expectation, and disjoint confidence sets with uncertain probabilities defined by φ-divergence. In particular, we also show that the Wasserstein-based ambiguity set has an equivalen...
متن کاملDistributionally Robust Optimization with Infinitely Constrained Ambiguity Sets
We consider a distributionally robust optimization problem where the ambiguity set of probability distributions is characterized by a tractable conic representable support set and expectation constraints. Specifically, we propose and motivate a new class of infinitely constrained ambiguity sets in which the number of expectation constraints could potentially be infinite. We show how the infinit...
متن کامل