Genetic basis for lipopolysaccharide O-antigen biosynthesis in bordetellae.
نویسندگان
چکیده
Bordetella bronchiseptica and Bordetella parapertussis express a surface polysaccharide, attached to a lipopolysaccharide, which has been called O antigen. This structure is absent from Bordetella pertussis. We report the identification of a large genetic locus in B. bronchiseptica and B. parapertussis that is required for O-antigen biosynthesis. The locus is replaced by an insertion sequence in B. pertussis, explaining the lack of O-antigen biosynthesis in this species. The DNA sequence of the B. bronchiseptica locus has been determined and the presence of 21 open reading frames has been revealed. We have ascribed putative functions to many of these open reading frames based on database searches. Mutations in the locus in B. bronchiseptica and B. parapertussis prevent O-antigen biosynthesis and provide tools for the study of the role of O antigen in infections caused by these bacteria.
منابع مشابه
Multiple roles for Bordetella lipopolysaccharide molecules during respiratory tract infection.
Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica are closely related subspecies that cause respiratory tract infections in humans and other mammals and express many similar virulence factors. Their lipopolysaccharide (LPS) molecules differ, containing either a complex trisaccharide (B. pertussis), a trisaccharide plus an O-antigen-like repeat (B. bronchiseptica), or...
متن کاملThe Genetic and Molecular Basis of O-Antigenic Diversity in Burkholderia pseudomallei Lipopolysaccharide
Lipopolysaccharide (LPS) is one of the most important virulence and antigenic components of Burkholderia pseudomallei, the causative agent of melioidosis. LPS diversity in B. pseudomallei has been described as typical, atypical or rough, based upon banding patterns on SDS-PAGE. Here, we studied the genetic and molecular basis of these phenotypic differences. Bioinformatics was used to determine...
متن کاملHorizontally Acquired Glycosyltransferase Operons Drive Salmonellae Lipopolysaccharide Diversity
The immunodominant lipopolysaccharide is a key antigenic factor for Gram-negative pathogens such as salmonellae where it plays key roles in host adaptation, virulence, immune evasion, and persistence. Variation in the lipopolysaccharide is also the major differentiating factor that is used to classify Salmonella into over 2600 serovars as part of the Kaufmann-White scheme. While lipopolysacchar...
متن کاملIdentification and cloning of waaF (rfaF) from Bordetella pertussis and use to generate mutants of Bordetella spp. with deep rough lipopolysaccharide.
A DNA locus from Bordetella pertussis capable of reconstituting lipopolysaccharide (LPS) O-antigen biosynthesis in Salmonella typhimurium SL3789 (rfaF511) has been isolated, by using selection with the antibiotic novobiocin. DNA within the locus encodes a protein with amino acid sequence similarity to heptosyltransferase II, encoded by waaF (previously rfaF) in other gram-negative bacteria. Mut...
متن کاملA complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster
The O antigen constitutes the outermost part of the lipopolysaccharide layer in Gram-negative bacteria. The chemical composition and structure of the O antigen show high levels of variation even within a single species revealing itself as serological diversity. Here, we present a complete sequence set for the O-antigen biosynthesis gene clusters (O-AGCs) from all 184 recognized Escherichia coli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 67 8 شماره
صفحات -
تاریخ انتشار 1999