Compatibility of Finite Discrete Conditional Distributions
نویسندگان
چکیده
This paper provides new versions of necessary and sufficient conditions for compatibility of finite discrete conditional distributions, and of the uniqueness for those compatible conditional distributions. We note that the ratio matrix (the matrix C in Arnold and Press (1989)), after interchanging its rows and/or columns, can be rearranged to be an irreducible block diagonal matrix. We find that checking compatibility is equivalent to inspecting whether every block on the diagonal has a rank one positive extension, and that the necessary and sufficient conditions of the uniqueness, if the given conditional densities are compatible, is that the ratio matrix itself is irreducible. We show that each joint density, if it exists, corresponds to a rank one positive extension of the ratio matrix, and we characterize the set of all possible joint densities. Finally, we provide algorithms for checking compatibility, for checking uniqueness, and for constructing densities.
منابع مشابه
Classification and properties of acyclic discrete phase-type distributions based on geometric and shifted geometric distributions
Acyclic phase-type distributions form a versatile model, serving as approximations to many probability distributions in various circumstances. They exhibit special properties and characteristics that usually make their applications attractive. Compared to acyclic continuous phase-type (ACPH) distributions, acyclic discrete phase-type (ADPH) distributions and their subclasses (ADPH family) have ...
متن کاملMulti-step learning and underlying structure in statistical models
In multi-step learning, where a final learning task is accomplished via a sequence of intermediate learning tasks, the intuition is that successive steps or levels transform the initial data into representations more and more “suited" to the final learning task. A related principle arises in transfer-learning where Baxter (2000) proposed a theoretical framework to study how learning multiple ta...
متن کاملOn discrete a-unimodal and a-monotone distributions
Unimodality is one of the building structures of distributions that like skewness, kurtosis and symmetry is visible in the shape of a function. Comparing two different distributions, can be a very difficult task. But if both the distributions are of the same types, for example both are unimodal, for comparison we may just compare the modes, dispersions and skewness. So, the concept of unimodali...
متن کاملProbability Measures with given Marginals and Conditionals: I-projections and Conditional Iterative Proportional Fitting
The iterative proportional fitting procedure (IPF-P) is an algorithm to compute approximately probability measures with prescribed marginals. We propose two extensions of the IPF-P, called conditional iterative proportional fitting procedures (CIPF-P), so that, additionally, given conditional distributions are taken into account. This modification is carried out by using the geometrical interpr...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کامل