Self-organizing maps in sequence processing
نویسنده
چکیده
Models are abstractions of observed real world phenomena or processes. A good model captures the essential properties of the modeled phenomena. In the statistical learning paradigm the processes that generate observations are assumed unknown and too complex for analytical modeling, thus the models are trained from more general templates with measured observations. A substantial part of the processes we seek to model have temporal dependencies between observations thus defining templates that can account for these dependencies improves their ability to capture the properties of such processes. In this work we discuss using the self organizing map with sequentially dependent data. Self-Organizing map (SOM) is perhaps the most popular non supervised neural network model that has found varied applications in the field of data mining for example. The original SOM paradigm, however, considers independent data, where context of a sample does not influence its interpretation. However, throwing away the temporal context of an observation when we know we are dealing with sequential data seems wasteful. Consequently methods for incorporating time into the SOM paradigm have been rather extensively studied. Such models if powerful enough would be very usable when tracking dynamic processes. In this work a Self-Organizing map for temporal sequence processing dubbed Recurrent Self-Organizing Map (RSOM) was proposed and analyzed. The model has been used in time series prediction combined with local linear models. Deeper analysis provides insight into how much and what kind of contextual information the model is able to capture. The other topic covered by the publications in a sense considers an inverse problem. In this topic SOM was used to create sequential dependence and order into initially unordered data by modeling a surface and creating a path over the surface for a surface manipulating robot.
منابع مشابه
Green Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملHow to make large self-organizing maps for nonvectorial data
The self-organizing map (SOM) represents an open set of input samples by a topologically organized, finite set of models. In this paper, a new version of the SOM is used for the clustering, organization, and visualization of a large database of symbol sequences (viz. protein sequences). This method combines two principles: the batch computing version of the SOM, and computation of the generaliz...
متن کاملNeural Gas for Sequences
For unsupervised sequence processing, standard self organizing maps (SOM) can be naturally extended by recurrent connections and explicit context representations. Known models are the temporal Kohonen map (TKM), recursive SOM, SOM for structured data (SOMSD), and HSOM for sequences (HSOM-S). We discuss and compare the capabilities of exemplary approaches to store different types of sequences. A...
متن کاملComparative Study of Image Segmentation using Variants of Self Organizing Maps (SOM)
Image segmentation is a very crucial step in the field of image processing which helps us to simplify the representation of the image, to make it easier to analyze. This paper deals with the comparison of image segmentation techniques based on unsupervised artificial neural network technique, known as Kohonen’s Self Organizing Maps (SOM). We first present image segmentation using Kohonen’s Self...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملA taxonomy of Self-organizing Maps for temporal sequence processing
This paper presents a taxonomy for Self-organizing Maps (SOMs) for temporal sequence processing. Four main application areas for SOMs with temporal processing have been identified. These are prediction, control, monitoring and data mining. Three main techniques have been used to model temporal relations in SOMs: 1) pre-processing or post-processing the data, but keeping the basic SOM algorithm;...
متن کامل