EFFECT OF ANNEALING ON GAS SENSING PERFORMANCE OF NANOSTRUCTURED ZnO THICK FILM RESISTORS

نویسندگان

  • Sarika D. Shinde
  • G. E. Patil
  • D. D. Kajale
  • V. G. Wagh
  • V. B. Gaikwad
  • G. H. Jain
چکیده

ZnO nano-particles have been synthesized by simple chemical route using a starting solution consisting of zinc acetate and citric acid as a surfactant agent. The structural properties of the prepared ZnO nano-particles annealed at different temperatures have been characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses. The XRD patterns show ZnO-wurtize phase in the nano-powders, and size of crystals increases by increasing the annealing temperatures. The TEM images show nano-particles as clusters with size in the range of 10-20 nm. Electron diffraction pattern of nano-powders annealed at 900 o C temperature shows a well distribution of spherical particles due to the effect of citric acid as surfactant in chemical process. Thick films prepared by screen printing technique from zinc oxide nano-powders annealed at different temperatures (500–900 o C), characterized by SEM analysis and tested for various gases. The film prepared from ZnO powder annealed at 700 o C shows the higher sensitivity to H2S gas for 10 ppm gas concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Zinc Oxide Nanostructured Thin Film by Sol- Gel Method and Evaluation of Gas Sensing Properties

Ethanol (C2H6O) sensitivity of zinc oxide (ZnO) thin film has been studied in present work. Semiconductor thin films of zinc oxide (ZnO) were deposited onto alkali-free glass substrates by the sol–gel method and dip-coating technique. The ZnO sol was synthesized by dissolving zinc acetate dehydrate in ethanol, and then adding Tetra ethanol-amine.  The as-coated films were preheated at 150 ºC fo...

متن کامل

Enhanced Gas Sensing Properties of Spin-coated Na-doped ZnO Nanostructured Films

In this report, the structures, morphologies, optical, electrical and gas sensing properties of ZnO and ZnO: Na spin-coated films are studied. X-ray diffraction (XRD) results reveal that the films are of a single phase wurtzite ZnO with a preferential orientation along (002) direction parallel to c-axis. Na doping reduces the crystalline quality of the films. The plane surface of ZnO film turne...

متن کامل

Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases

A one-step electrochemical method based on sacrificial anode electrolysis (SAE) was used to deposit stabilized gold nanoparticles (Au NPs) directly on the surface of nanostructured ZnO powders, previously synthesized through a sol-gel process. The effect of thermal annealing temperatures (300 and 550 °C) on chemical, morphological, and structural properties of pristine and Au-doped ZnO nancompo...

متن کامل

Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing

Undoped and Sn, Ni-doped nanostructured ZnO thin films were deposited on glass substrates using a successive ionic layer adsorption and reaction (SILAR) method at room temperature. The SILAR deposited zinc oxide films have been rapid photothermal processing (RPP) at various temperatures to study the effect of annealing on the sensing properties. Structural, electrical and sensing properties wer...

متن کامل

Improvement of Flame-made ZnO Nanoparticulate Thick Film Morphology for Ethanol Sensing

ZnO nanoparticles were produced by flame spray pyrolysis using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%). The particles properties were analyzed by XRD, BET. The ZnO particle size and morphology was observed by SEM and HR-TEM revealing spheroidal, hexagonal, and rod-like morphologies. The crystallite sizes of ZnO spheroidal and hexagonal particles ranged fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012