New applications of the wreath product of forest algebras
نویسنده
چکیده
We give several new applications of the wreath product of forest algebras to the study of logics on trees. These include new simplified proofs of necessary conditions for definability in CTL and first-order logic with the ancestor relation; a sequence of identities satisfied by all forest languages definable in PDL; and new examples of languages outsideCTL, along with an application to the question of what properties are definable in both CTL and LTL.
منابع مشابه
EF+EX Forest Algebras
We examine languages of unranked forests definable using the temporal operators EF and EX. We characterize the languages definable in this logic, and various fragments thereof, using the syntactic forest algebras introduced by Bojanczyk and Walukiewicz. Our algebraic characterizations yield efficient algorithms for deciding when a given language of forests is definable in this logic. The proofs...
متن کاملReflection Functors and Symplectic Reflection Algebras for Wreath Products
We construct reflection functors on categories of modules over deformed wreath products of the preprojective algebra of a quiver. These functors give equivalences of categories associated to generic parameters which are in the same orbit under the Weyl group action. We give applications to the representation theory of symplectic reflection algebras of wreath product groups.
متن کاملWreath Products and Kaluzhnin-krasner Embedding for Lie Algebras
The wreath product of groups A B is one of basic constructions in group theory. We construct its analogue, a wreath product of Lie algebras. Consider Lie algebras H and G over a field K. Let U(G) be the universal enveloping algebra. Then H̄ = HomK(U(G), H) has the natural structure of a Lie algebra, where the multiplication is defined via the comultiplication in U(G). Also, G acts by derivations...
متن کاملHarish-Chandra homomorphisms and symplectic reflection algebras for wreath-products
The main result of the paper is a natural construction of the spherical subalgebra in a symplectic reflection algebra associated with a wreath-product in terms of quantum hamiltonian reduction of an algebra of differential operators on a representation space of an extended Dynkin quiver. The existence of such a construction has been conjectured in [EG]. We also present a new approach to reflect...
متن کاملForest algebras
If in a transformation semigroup we assume that the set being acted upon has a semigroup structure, then the transformation semigroup can be used to recognize languages of unranked trees. This observation allows us to examine the relationship connecting languages of unranked trees with standard algebraic concepts such as aperiodicity, idempotency, commutativity and wreath product. In particular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RAIRO - Theor. Inf. and Applic.
دوره 47 شماره
صفحات -
تاریخ انتشار 2013