SHREC'13 Track: Large-Scale Partial Shape Retrieval Using Simulated Range Images
نویسندگان
چکیده
Partial shape retrieval is a challenging problem in content-based 3D model retrieval. This track intends to evaluate the performance of existing algorithms for partial retrieval. The contest is based on a new large-scale query set obtained by mimicking the range image acquisition using a standard 3D benchmark as target set. The query set contains 7200 partial meshes with different levels of complexity. Furthermore, we propose the use of new performance measures based on a partiality factor. With this characteristics, our goal is to evaluate several important aspects: effectiveness, efficiency, robustness and scalability. The obtained results of this track open new questions regarding the difficulty of the partial shape retrieval problem and the scalability of algorithms. In addition, potential future directions on this topic are identified.
منابع مشابه
SHREC'10 Track: Large Scale Retrieval
This paper is a report on the 3D Shape Retrieval Constest 2010 (SHREC’10) track on large scale retrieval. This benchmark allows evaluating how wel retrieval algorithms scale up to large collections of 3D models. The task was to perform 40 queries in a dataset of 10000 shapes. We describe the methods used and discuss the results and signifiance analysis.
متن کاملSHREC 2009 - Shape Retrieval Contest
The general objective of the 3D Shape Retrieval Contest (see http://www.aimatshape.net/event/ SHREC) is to evaluate the effectiveness of 3D-shape retrieval algorithms. After three years of success, the contest is now organized in conjunction with the Eurographics Workshop on 3D Object Retrieval, where the evaluation results are presented. Thanks to the effort of previous track organizers, SHREC...
متن کاملSHREC'13 Track: Large Scale Sketch-Based 3D Shape Retrieval
Sketch-based 3D shape retrieval has become an important research topic in content-based 3D object retrieval. The aim of this track is to measure and compare the performance of sketch-based 3D shape retrieval methods based on a large scale hand-drawn sketch query dataset which has 7200 sketches and a generic 3D model target dataset containing 1258 3D models. The sketches and models are divided i...
متن کاملFisher encoding of differential fast point feature histograms for partial 3D object retrieval
Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape matching scheme combining local shape descriptors with their Fisher encodings....
متن کاملSHREC ’ 14 Track : Extended Large Scale Sketch - Based 3 D Shape Retrieval
Large scale sketch-based 3D shape retrieval has received more and more attentions in the community of contentbased 3D object retrieval. The objective of this track is to evaluate the performance of different sketch-based 3D model retrieval algorithms using a large scale hand-drawn sketch query dataset on a comprehensive 3D model dataset. The benchmark contains 12,680 sketches and 8,987 3D model...
متن کامل