MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1.

نویسندگان

  • Richard D Smrt
  • Keith E Szulwach
  • Rebecca L Pfeiffer
  • Xuekun Li
  • Weixiang Guo
  • Manavendra Pathania
  • Zhao-Qian Teng
  • Yuping Luo
  • Junmin Peng
  • Angelique Bordey
  • Peng Jin
  • Xinyu Zhao
چکیده

The maturation of young neurons is regulated by complex mechanisms and dysregulation of this process is frequently found in neurodevepmental disorders. MicroRNAs have been implicated in several steps of neuronal maturation including dendritic and axonal growth, spine development, and synaptogenesis. We demonstrate that one brain-enriched microRNA, miR-137, has a significant role in regulating neuronal maturation. Overexpression of miR-137 inhibits dendritic morphogenesis, phenotypic maturation, and spine development both in brain and cultured primary neurons. On the other hand, a reduction in miR-137 had opposite effects. We further show that miR-137 targets the Mind bomb one (Mib1) protein through the conserved target site located in the 3' untranslated region of Mib1 messenger RNA. Mib1 is an ubiquitin ligase known to be important for neurodevelopment. We show that exogenously expressed Mib1 could partially rescue the phenotypes associated with miR-137 overexpression. These results demonstrate a novel miRNA-mediated mechanism involving miR-137 and Mib1 that function to regulate neuronal maturation and dendritic morphogenesis during development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The E3 ubiquitin ligase Nedd4/Nedd4L is directly regulated by microRNA 1.

miR-1 is a small noncoding RNA molecule that modulates gene expression in heart and skeletal muscle. Loss of Drosophila miR-1 produces defects in somatic muscle and embryonic heart development, which have been partly attributed to miR-1 directly targeting Delta to decrease Notch signaling. Here, we show that overexpression of miR-1 in the fly wing can paradoxically increase Notch activity indep...

متن کامل

Mind bomb-2 is an E3 ligase for Notch ligand.

The zebrafish gene, mind bomb (mib), encodes a protein that positively regulates of the Delta-mediated Notch signaling. It interacts with the intracellular domain of Delta to promote its ubiquitination and endocytosis. In our search for the mouse homologue of zebrafish mind bomb, we cloned two homologues in the mouse genome: a mouse orthologue (mouse mib1) and a paralogue, named mind bomb-2 (mi...

متن کامل

The ubiquitin ligase Drosophila Mind bomb promotes Notch signaling by regulating the localization and activity of Serrate and Delta.

The receptor Notch and its ligands of the Delta/Serrate/LAG2 (DSL) family are the central components in the Notch pathway, a fundamental cell signaling system that regulates pattern formation during animal development. Delta is directly ubiquitinated by Drosophila and Xenopus Neuralized, and by zebrafish Mind bomb, two unrelated RING-type E3 ubiquitin ligases with common abilities to promote De...

متن کامل

Tumor suppressive microRNA-137 negatively regulates Musashi-1 and colorectal cancer progression

Stem cell marker, Musashi-1 (MSI1) is over-expressed in many cancer types; however the molecular mechanisms involved in MSI1 over-expression are not well understood. We investigated the microRNA (miRNA) regulation of MSI1 and the implications this regulation plays in colorectal cancer. MicroRNA miR-137 was identified as a MSI1-targeting microRNA by immunoblotting and luciferase reporter assays....

متن کامل

MicroRNA-182 Regulates Neurite Outgrowth Involving the PTEN/AKT Pathway

MicroRNAs are implicated in neuronal development and maturation. Neuronal maturation, including axon outgrowth and dendrite tree formation, is regulated by complex mechanisms and related to several neurodevelopmental disorders. We demonstrated that one neuron-enriched microRNA, microRNA-182 (miR-182), played a significant role in regulating neuronal axon outgrowth and dendrite tree formation. O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stem cells

دوره 28 6  شماره 

صفحات  -

تاریخ انتشار 2010