Error-correcting output codes based ensemble feature extraction
نویسندگان
چکیده
This paper proposes a novel feature extraction method based on ensemble learning. Using the errorcorrecting output codes (ECOC) to design binary classifiers (dichotomizers) for separating subsets of classes, the outputs of the dichotomizers are linear or nonlinear features that provide powerful separability in a new space. In this space, the vector quantization based meta classifier can be viewed as an ECOC decoder, where each learned prototype of a class can be seen as a codeword of the class in the new representation space. We conducted extensive experiments on 16 multi-class data sets from the UCI machine learning repository. The results demonstrate the superiority of the proposed method over both existing ECOC approaches and classic feature extraction approaches. In particular, the decoding strategy using a meta classifier is shown to be more computationally efficient than the linear lossweighted decoding in state-of-the-art ECOC methods. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Classification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملEpileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties
Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...
متن کاملAn approach to fault detection and correction in design of systems using of Turbo codes
We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...
متن کاملConditional Models on the Ranking Poset
A distance-based conditional model on the ranking poset is presented for use in classification and ranking. The model is an extension of the Mallows model, and generalizes the classifier combination methods used by several ensemble learning algorithms, including error correcting output codes, discrete AdaBoost, logistic regression and cranking. The algebraic structure of the ranking poset leads...
متن کاملA Pairwise Ensemble Approach for Accurate Genre Classification
Text classification, whether by topic or genre, is an important task that contributes to text extraction, retrieval, summarization and question answering. In this paper we present a new pairwise ensemble approach, which uses pairwise Support Vector Machine (SVM) classifiers as base classifiers and “input-dependent latent variable” method for model combination. This new approach better captures ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 46 شماره
صفحات -
تاریخ انتشار 2013