Generalized Complete Intersections with Linear Resolutions

نویسندگان

  • MUNETAKA OKUDAIRA
  • YUKIHIDE TAKAYAMA
چکیده

We determine the simplicial complexes ∆ whose Stanley-Reisner ideals I∆ have the following property: for all n ≥ 1 the powers In ∆ have linear resolutions and finite length local cohomologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Resolutions of Powers of Generalized Mixed Product Ideals

Let L be the generalized mixed product ideal induced by a monomial ideal I. In this paper we compute powers of the genearlized mixed product ideals and show that Lk  have a linear resolution if and only if Ik have a linear resolution for all k. We also introduce the generalized mixed polymatroidal ideals and prove that powers and monomial localizations of a generalized mixed polymatroidal ideal...

متن کامل

Remarks on Non-commutative Crepant Resolutions of Complete Intersections

We study obstructions to existence of non-commutative crepant resolutions, in the sense of Van den Bergh, over local complete intersections.

متن کامل

Matrix Factorizations for Complete Intersections and Minimal Free Resolutions

Matrix factorizations of a hypersurface yield a description of the asymptotic structure of minimal free resolutions over the hypersurface, and also define a functor to the stable module category of maximal Cohen-Macaulay modules on the hypersurface. We introduce a new functorial concept of matrix factorizations for complete intersections that allows us to describe the asymptotic structure of mi...

متن کامل

Three Themes of Syzygies

We present three exciting themes of syzygies, where major progress has been made recently: Boij-Söderberg theory, Stillman’s question, and syzygies over complete intersections. Free resolutions are both central objects and fruitful tools in commutative algebra. They have many applications in algebraic geometry, computational algebra, invariant theory, hyperplane arrangements, mathematical physi...

متن کامل

Graded Betti Numbers of Cohen-macaulay Modules and the Multiplicity Conjecture

We give conjectures on the possible graded Betti numbers of Cohen-Macaulay modules up to multiplication by positive rational numbers. The idea is that the Betti diagrams should be non-negative linear combinations of pure diagrams. The conjectures are verified in the cases where the structure of resolutions are known, i.e., for modules of codimension two, for Gorenstein algebras of codimension t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006